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Abstract

Background: Periprostatic (PP) adipose tissue surrounds the prostate, an organ with a high predisposition to
become malignant. Frequently, growing prostatic tumor cells extend beyond the prostatic organ towards this fat
depot. This study aimed to determine the genome-wide expression of genes in PP adipose tissue in obesity/
overweight (OB/OW) and prostate cancer patients.

Methods: Differentially expressed genes in human PP adipose tissue were identified using microarrays. Analyses
were conducted according to the donors’ body mass index characteristics (OB/OW versus lean) and prostate
disease (extra prostatic cancer versus organ confined prostate cancer versus benign prostatic hyperplasia). Selected
genes with altered expression were validated by real-time PCR. Ingenuity Pathway Analysis (IPA) was used to
investigate gene ontology, canonical pathways and functional networks.

Results: In the PP adipose tissue of OB/OW subjects, we found altered expression of genes encoding molecules
involved in adipogenic/anti-lipolytic, proliferative/anti-apoptotic, and mild immunoinflammatory processes (for
example, FADS1, down-regulated, and LEP and ANGPT1, both up-regulated). Conversely, in the PP adipose tissue of
subjects with prostate cancer, altered genes were related to adipose tissue cellular activity (increased cell
proliferation/differentiation, cell cycle activation and anti-apoptosis), whereas a downward impact on immunity and
inflammation was also observed, mostly related to the complement (down-regulation of CFH). Interestingly, we
found that the microRNA MIRLET7A2 was overexpressed in the PP adipose tissue of prostate cancer patients.

Conclusions: Obesity and excess adiposity modified the expression of PP adipose tissue genes to ultimately foster
fat mass growth. In patients with prostate cancer the expression profile of PP adipose tissue accounted for
hypercellularity and reduced immunosurveillance. Both findings may be liable to promote a favorable environment
for prostate cancer progression.
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Background
Prostate cancer is the most common solid neoplasm and
the second cause of cancer death in men in Europe [1].
Age, ethnic background and family history are well-
established risk factors. In addition, accumulating

evidence over the last years has shown that obesity is a
relevant risk factor for many types of malignancies,
including aggressive prostate cancer [2,3].
Adipose tissue dysfunctional behavior, often seen in obe-

sity, has been widely appreciated as a major cause underly-
ing cancer [4]. The prostate has a capsular-like structure
and is surrounded by adipose tissue. Frequently, prostate
tumor cells infiltrate the periprostatic (PP) fat pad by
transposing or infiltrating the capsule [5], resulting in
immediate proximity to adipose tissue. Once cancer cells
extend beyond the capsule, the PP adipose tissue-secreted
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factors, extracellular matrix components or direct cell-cell
contact may influence the phenotypic behavior of malig-
nant cells. In fact, recent findings in PP adipose tissue
showed that tumor-derived factors influence its metabolic
activity profile, and that increased local production of
adipokines and PP fat thickness were associated with pros-
tate cancer aggressiveness [6-9]. Furthermore, while the
PP adipose tissue gene expression profile is currently
unknown, it is well established that adipose tissue from
distinct anatomical origins and obesity status has specific
gene expression signatures [10,11]. Knowledge of the PP
adipose tissue genomic profile may uncover molecules and
mechanisms linked either with obesity or prostate cancer
that can influence prostate cancer progression.
In this study, we aimed to determine the spectrum of

genes differentially expressed in PP adipose tissue as well
as relevant functional clustering, in order to evaluate the
influence of obesity/overweight (OB/OW) on prostate
cancer and vice versa.

Methods
Patients
Patients scheduled for retropubic radical prostatectomy
or partial open prostatectomy between May and October
2009, without major co-morbidities, were included in this
study after they gave informed consent. Inclusion criteria
were age (45 to 75 years) and absence of previous
prostatic treatments. Exclusion criteria were: diabetes,
family history of prostate cancer, transvesical partial open
prostatectomy, other primary malignancies, or pharma-
cological treatment with drugs that may modify adipose
tissue gene expression (for example, anti-dislipidemics or
anti-diabetics).
Anterior-lateral samples of PP adipose tissue were col-

lected during surgery. Adipose tissue samples were imme-
diately sectioned, cleaned and rinsed with pre-warmed
PBS and immersed in RNAlater (Applied Biosystems,
Foster City, CA, USA).

Eighteen patients participated in the study and were
divided into three groups based on post-surgical diagnosis
and pathologic analyses. Six patients with benign prostatic
hyperplasia (BPH) and twelve with prostate cancer (six
with pT1-T2, organ confined prostate cancer (OCPCa)
and six with pT3-T4, extra-prostatic prostate cancer
(EPCa)) met the criteria for inclusion in this study. In each
prostatic disease group, three patients were lean (body
mass index, BMI <25 kg/m2) and three were obese/over-
weight (OB/OW, BMI ≥25 kg/m2), resulting in overall
nine lean and nine OB/OW. Participants’ clinicopathologi-
cal characteristics and serum PSA concentration at diag-
nosis were reviewed from clinical charts and are presented
in Table 1. The project was approved, from an ethical and
scientific standpoint, by the Ethical Committees responsi-
ble for research at all institutions, namely the Portuguese
Institute of Oncology, Porto Hospital Centre and Porto
Military Hospital in Portugal, as well as that of the Clínica
Universidad de Navarra in Spain. All reported investiga-
tions were carried out in accordance with the principles of
the Declaration of Helsinki as revised in 2008.

RNA extraction, microarray hybridization and data
processing
Total RNA was extracted from PP adipose tissue samples
after homogenization with an ULTRA-TURRAX T25
basic (IKA Werke GmbH, Staufen, Germany) in QIAzol
reagent (Qiagen, Valencia, CA, USA) and purified
through columns (RNeasy Lipid Tissue Mini kit, Qiagen)
with DNase I treatment (RNase-free DNase set, Qiagen).
Integrity and purity of RNA were assessed by on-chip
electrophoresis using Experion (BioRad, Hercules, CA,
USA).
From 1 µg total RNA, cDNA and biotin-labeled antisense

cRNA were obtained and hybridized to a high-density
oligonucleotide human genome array HG-U133 Plus 2.0
Affymetrix GeneChip Arrays (Affymetrix, Santa Clara, CA,
USA). Background correction and normalization were done

Table 1 Characteristics of participants included in the study

BPH (n = 6) OCPCa (n = 6) EPCa (n = 6) P

Age (years) 67.4 ± 3.9 59.4 ± 2.9 66.9 ± 2.3 0.140a

BMI (kg/m2) 26.5 ± 1.5 25.2 ± 1.3 26.5 ± 1.6 0.783a

Serum total PSA (ng/mL) 8.9 ± 4.7 6.7 ± 1.6 14.7 ± 3.0 0.114b

Prostate weight (g) 107.0 ± 12.9 40.8 ± 4.2 71.2 ± 9.5 0.001a, c

Serum leptin (mg/mL) 3.7 ± 1.0 7.1 ± 2.5 4.9 ± 1.8 0.453a

Combined Gleason score

≤7 (3+4), n (%) — 5 (83%) 4 (67%) 1.000d

≥7 (4+3), n (%) — 1 (17%) 2 (33%)

Continuous variables are presented as mean ± SE. aANOVA for independent measures; bKruskal-Wallis test; cLSD post-hoc analysis: BPH versus organ confined
PCa, P <0.0001, BPH versus extra prostatic cancer, P = 0.018, extra prostatic cancer versus organ confined PCa, P = 0.040; dFisher exact test. Median (interquartile
range) values for serum total PSA: BPH, 4.7 (3.7 to 18.4) ng/mL; organ confined cancer, 5.1 (4.1 to 10.2) ng/mL; extra-prostatic cancer, 14.7 (8.3 to 21.2) ng/mL.
ANOVA, analysis of variance; BMI, body mass index; BPH, benign prostatic hyperplasia; EPCa, extra prostatic cancer; OCPCa, organ confined prostate cancer; PCa,
prostate cancer; PSA, prostate specific antigen.
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using a robust multi-array average algorithm [12]. Calcula-
tion of fold change values was performed using the lean
and the non-cancer or OCPCa as reference. We used
Linear Models for Microarray Data [13] to identify differen-
tially expressed genes. Briefly, it starts by fitting a linear
model for each gene in the data; then an empirical Bayes
method is used to moderate the standard errors for esti-
mating the moderated t-statistics for each gene, which
shrinks the standard errors towards a common value. This
test is similar to a t-test method for each probe except that
the residual standard deviations are moderated across
genes to ensure a more stable inference for each gene. The
moderated standard deviations are a compromise between
the individual genewise standard deviations and an overall
pooled standard deviation. We used False Discovery Rate
[14] to evaluate the statistical significance of all genes.

Enrichment analysis using Ingenuity Pathway Analysis
software
We evaluated the gene function and network enrichments
for selected genes (unadjusted P <0.01) using Ingenuity
Pathway Analysis (IPA) software (Ingenuity Systems, Red-
wood City, The OCPCa group of patients was not
included in this analysis. Human Genome Organisation
(HUGO)-approved gene symbols and their corresponding
fold change were uploaded into the software. Networks of
these genes were algorithmically generated based on their
connectivity and assigned a score. The score takes into
account the number of focus genes in the network and the
size of the network to approximate its relevance to the ori-
ginal list of focus genes. The identified networks are pre-
sented as a figure indicating molecular relationships
between genes/gene products. Canonical pathway analysis
identified the pathways which were more significant to the
input data set.

Real-Time PCR
To validate the microarray data, a number of representa-
tive genes and microRNAs were selected to be studied by
real-Time PCR. For gene expression analysis, cDNA was
generated using the ThermoScript RT-PCR system (Invi-
trogen, Carlsbad, CA, USA), whereas for microRNA
expression we used the Taqman MicroRNA RT kit
(Applied Biosystems), according to the manufacturer’s
instructions.
Transcript levels of the selected genes and microRNAs

were quantified by Real-Time PCR (StepOne, Foster City,
CA, Applied Biosystems). The cDNA was amplified using
the following conditions, both for genes (Taqman Gene
Expression Master Mix, Applied Biosystems) and micro-
RNAs (Taqman Universal Master Mix, Applied Biosys-
tems): 95°C for 10 minutes, followed by 45 cycles of
15 seconds at 95°C and 1 minute at 60°C. Results were
normalized to the levels of the 18S rRNA for genes and of

mir-103 for microRNA, according to previous reports
using adipose tissue [15,16]. Assays’ ID are available upon
request to the authors. Gene and microRNA expression
was calculated using the REST 2009 software, where rela-
tive expression was expressed as fold over the reference
group. The products of the PCA3 gene amplification were
verified by 1.5% agarose gel electrophoresis, and acquired
using the GelDoc XR system (BioRad) and Quantity One
software (BioRad).

Plasma leptin measurement
Plasma samples were obtained before surgery after an over-
night fast. The concentrations of circulating leptin were
quantified using microsphere-based multiplexing technol-
ogy, as previously described [17]. The intra- and inter-assay
precisions were 4.2% and 21.4%, respectively. The mini-
mum leptin detectable concentration was 27.4 pg/mL.

Statistical analysis
Data are presented as mean ± standard error of the mean
or median (interquartile range). Departure from normal-
ity was tested using the Kolmogorov-Smirnov test.
Accordingly, one-way analysis of variance (ANOVA),
Kruskal-Wallis or Fisher tests were used for comparisons
of clinicopathological variables between prostatic disease
groups, whereas differences between OB/OW and lean
groups were tested by unpaired t-test, Mann-Whitney
and chi-square tests. Data analyses were performed using
the software SPSS version 17.0 (SPSS Inc., Chicago, USA)
and a P <0.05 was considered statistically significant.

Results
Patient characteristics
Clinicopathological characteristics of participants accord-
ing to prostatic disease status are presented in Table 1.
Age at diagnosis, BMI, serum leptin and prostate specific
antigen (PSA) levels, and combined Gleason grade in sub-
jects with cancer were similar between prostatic disease
groups (P >0.05 for all comparisons). In this study, as
expected, BPH subjects presented heavier prostates (P <
0.05). The OB/OW had higher mean BMI (29.1 ± 1.8 ver-
sus 23.1 ± 1.2 kg/m2, P <0.0001) and serum leptin levels
(8.6 ± 1.3 versus 1.9 ± 0.7 mg/mL, P = 0.001) than lean
subjects. For each group of prostate disease (BPH, OCPCa
and EPCa), significantly higher BMI was observed in OB/
OW subjects compared with lean individuals (P = 0.016,
P < 0.0001 and P = 0.013, respectively).

PCA3 gene expression in PP adipose tissue
Frequently, prostate tumor cells infiltrate the PP fat; there-
fore, in order to analyze the PP adipose tissue gene expres-
sion signature, we needed to confirm the absence of tumor
cells. To confirm whether PP adipose tissue samples were
free from prostate cancer cells the expression of the PCA3
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gene was examined. Lack of expression of this gene in the
PP adipose tissue of cancer patients was demonstrated
(Figure 1).

Defining the PP adipose tissue gene expression
signature in OB/OW subjects
Comparison of overall transcriptional response revealed
148 of the analyzed gene probe sets as significantly chan-
ged (P <0.001 and absolute fold change ≥1.5). Among
these gene probe sets, gene expression features of the
overall OB/OW patients associated with six altered genes,
whereas OB/OW subjects in restricted BPH, OCPCa and
EPCa groups exhibited a specific panoply of altered genes
for each condition, which is summarized in Table 2 show-
ing the most representative ones (Table 2).
The IPA software was used to investigate functions and

interactions among altered genes. This analysis revealed a
broad spectrum of biological processes for OB/OW versus
lean. Altered functions were predominantly related to
nutritional disease, connective tissue development and
function, cell death, cellular development and cellular
growth and proliferation [See Additional file 1, Table S1].
Additional file 2 Figure S1) shows the most significant net-
work in OB/OW men (P < 0.0001). In human PP adipose
tissue of OB/OW the most relevantly altered canonical
pathways were associated with glycerolipid metabolism
and leptin signaling (Table 3), and differentially expressed
genes encoded proteins involved in immunity and inflam-
mation, cell growth and proliferation, fat metabolism and
apoptosis. When restricted to the group of subjects with
BPH, being OB/OW was associated with changes in the

expression of genes involved in cell-to-cell signaling, tissue
development and cellular movement functions [See Addi-
tional file 1, Table S1].

Defining the PP adipose tissue gene expression
signature in prostate cancer patients
Table 4 shows differentially expressed genes according to
prostatic disease (P <0.001 and absolute fold change ≥1.5).
We found that in the PP adipose tissue of EPCa patients
eight genes were up-regulated compared to BPH, while in
OCPCa versus BPH most of the genes were down-regu-
lated; a predominance of up-regulated genes was observed
in EPCa compared to OCPCa. The PP adipose tissue of
cancer patients exhibited increased transcript levels of
MIRLET7A2 and TC2N compared with BPH. Interest-
ingly, MIRLET7A2 and MRPL42 were overexpressed in all
analyses (overall, and within lean and OB/OW groups) in
the PP adipose tissue of patients with EPCa. In OB/OW
subjects three genes were consistently overexpressed
(TC2N, MIRLET7A2 and CLDN10) in the PP adipose tis-
sue of men with cancer (EPCa or OCPCa), compared to
BPH.
In the analysis of prostate cancer versus BPH, OB/OW

subjects presented more altered genes in PP adipose tissue.
The IPA analysis identified interaction networks between
EPCa versus BPH and found that functions were more fre-
quently related to cellular growth and proliferation, cell
cycle, apoptosis and cell death, cellular movement and to
inflammation and immunity [See Additional file 3, Table S2]
(P < 0.0001). The altered canonical pathways (P <0.05) in
the PP adipose tissue of EPCa are shown in Table 3.

Figure 1 Reverse transcription PCR analysis of PCA3 in PP adipose tissue samples. GR, gene ruler 100 bp; (+) positive control (prostate
tumor sample); (-) negative control (without cDNA); 1-to-6, periprostatic adipose tissue samples of patients with extra prostatic cancer.
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Validation of selected genes by real-time PCR
Validation experiments were performed to confirm the
accuracy of array gene expression measurements. We
selected a set of representative transcripts involved in cell
proliferation, immunity and lipid metabolism. Results
across the 18 study patients are shown in Figure 2. Overall,
PCR results reflected the findings of microarrays.

Discussion
Extra-capsular extension of prostate cancer cells into the
PP adipose tissue is a common pathologic finding and a
factor related with worst prognosis [5]. Once tumor cells
extend beyond the prostatic capsule, the interactions with
non-tumor cells in the PP adipose tissue may influence its
phenotypic behavior. In fact, accumulating evidence shows
that the microenvironment is decisive in determining
whether cancer cells progress towards metastasis or
whether they remain dormant [18]. To date, the scarce
reports on PP adipose tissue support a mechanistic link
with prostate cancer aggressiveness [6-9].
In the present study, 46% of the well-characterized genes

included in the array were expressed at detection level in
PP adipose tissue, which is comparable to omental adipose
tissue [11]. The comparison of PP adipose tissue gene

expression of non-diabetic OB/OW men to lean men with
prostatic disease identified, for the first time, 34 differen-
tially expressed genes of which we focused our attention
on 20 as the most relevant ones.
Two important but opposed pathways, lipolysis and

adipo/lipogenesis, have a significant role in energy balance.
In our study, consistent with other reports on visceral adi-
pose tissue [11], altered expression of genes involved in
lipolysis were found in association with obesity and excess
adiposity. NPY1R and NPY5R have anti-lipolytic effects
[19], whereas LEP expression relates to adipo/lipogenesis
despite leptin being also a lipolytic factor [20], with all of
these overexpressed genes being in the PP adipose tissue
of OB/OW men. Noteworthy, PDE11, which has been
shown to be involved in adipocyte differentiation and cyc-
lic nucleotides biology [21], was overexpressed in PP adi-
pose tissue of OB/OW subjects. Downstream effects of
altered genes reportedly up-regulate adipo/lipogenesis,
including PNPLA3 (also known as adiponutrin), which
encodes a triacylglycerol lipase that mediates triacylgly-
cerol hydrolysis [22], FADS1, that regulates unsaturation
of fatty acids and SREBP-1 expression [23] or PCYT2, that
mediates phosphatidylethanolamine synthesis and the
availability of di- and triacylglycerol [24]. The combined

Table 2 Altered genes in microarray analysis in OB/OW PP adipose tissue (overall and by prostatic disease)

Probe set Gene Name Gene Description Fold Change P

All subjects

8098146 NPY5R neuropeptide Y receptor Y5 1.80 1.49E-05

7948612 FADS1 fatty acid desaturase 1 -1.73 1.16E-04

8103494 NPY1R neuropeptide Y receptor Y1 1.97 1.56E-04

7969050 CYSLTR2 cysteinyl leukotriene receptor 2 1.89 2.19E-04

8073633 PNPLA3 patatin-like phospholipase domain containing 3 -1.56 5.74E-04

7930181 AS3MT arsenic (+3 oxidation state) methyltransferase 1.53 6.54E-04

BPH

8020343 ANKRD20A5 ankyrin repeat domain 20 family; member A5 -1.51 3.95E-05

8152297 ANGPT1 angiopoietin 1 1.63 2.08E-04

7937508 CD151 CD151 molecule (Raph blood group) 1.69 2.43E-04

7959102 HSPB8 heat shock 22kDa protein 8 1.51 3.88E-04

8047780 SNORA41 small nucleolar RNA; H/ACA box 41 -1.77 4.94E-04

8098146 NPY5R neuropeptide Y receptor Y5 2.06 7.86E-04

8135909 LEP leptin 1.95 8.00E-04

OCPCa

7997239 PDXDC2 pyridoxal-dependent decarboxylase domain containing 2 1.99 8.30E-06

7994026 NPIPL3 nuclear pore complex interacting protein-like 3 1.64 1.52E-04

8019280 PCYT2 phosphate cytidylyltransferase 2; ethanolamine -1.54 7.55E-04

EPCa

7902400 SNORD45B small nucleolar RNA; C/D box 45B -4.71 2.29E-04

7980861 CATSPERB cation channel; sperm-associated; beta 1.73 5.81E-04

8057004 PDE11A phosphodiesterase 11A 2.59 6.68E-04

8004325 EIF5A eukaryotic translation initiation factor 5A -1.50 7.72E-04

7969050 CYSLTR2 cysteinyl leukotriene receptor 2 2.50 9.01E-04

Fold change and the corresponding P-value for each significant gene are presented, using the lean group as reference. The bold ones with adjusted P <0.2.
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functional dysregulation of these genes suggests that PP
adipose tissue from obese men exhibits an anti-lipolytic
and adipo/lipogenic gene expression profile.
The number and volume of adipocytes are determi-

nants of fat mass, while proliferation/differentiation and
apoptosis influence adipose tissue growth and regres-
sion. In our study, the anti-apoptotic genes ANGPT1
and HSPB8 were up-regulated in PP adipose tissue of
OB/OW subjects [25,26]. Furthermore, the expression
of EIF5A, known to activate the intrinsic mitochondrial
pathway [27], was repressed in OB/OW men. Besides
altered genes in apoptosis pathways, we found an
increased expression of genes involved in cell growth

and differentiation, such as LEP and ANGPT1, whose
products increase endothelial, mesenchymal and tumor
cell growth and differentiation [25,28-30], and NPY1R
that mediates a proliferative stimulus in progenitor adi-
pose cells [31]. The data presented here suggest an
increased cell growth and anti-apoptosis, extensive to
endothelial, progenitor or adult lineages in the PP adi-
pose tissue of OB/OW men.
Taken together, these anti-lipolytic, adipo/lipogenic, pro-

liferative and anti-apoptotic effects in the PP adipose tissue
of OB/OW men likely result in fat mass expansion, confer-
ring increased capacity for enlarged adipocytes to express
adipokines and increase fatty acid supplies [32,33], which
might impact the local energy and availability of growth
factors, thereby causing the local environment to allow
cancer progression. This environment in the PP adipose
tissue of OB/OW men may, at least partially, explain the
described association of obesity and excess adiposity with
the progression of prostate cancer [3] (Figure 3). In addi-
tion to a local paracrine effect of adipose tissue-derived
factors, obesity-related systemic factors may also influence
the development of an aggressive phenotype [34].
Recent developments in obesity and cancer immunologi-

cal pathways suggest a previously unappreciated complex-
ity of cancer cell-adipose tissue cell-immunoinflammatory
cell cross-talk [35]. We found altered genes in PP adipose
tissue of OB/OW men that are involved in immunity and
inflammation. Overexpressed genes engaged in innate and
adaptive components of the immune system, include LEP,
that up-regulates both innate and adaptive immunoinflam-
matory response [36], NPY1R, that has been shown to
inhibit T cell activation [37], and CYSTLR2, that increases
pro-inflammatory cytokine expression [38]. FADS1,
known to mediate the formation of inflammatory media-
tors (for example, prostaglandin E2, PGE2, thromboxane
A2, TXA2, and leukotriene B4, LTB4) [39], and EIF5A
that is essential for NOS2 translation [40], are both down-
regulated in the PP adipose tissue of OB/OW men. Thus,
the enhanced local mild immunoinflammatory environ-
ment, observed in PP adipose tissue of OB/OW men
might further influence tissue remodeling and contribute
towards tumor progression.
The LEP and ANGPT1 encoded proteins may have

roles beyond adipose tissue itself. Prostate cancers
express the leptin receptor [41] and leptin staining is sig-
nificantly increased in malignant prostates and poorly
differentiated tumors [41]. Also angiopoietin 1 and its
receptor Tie-2 were found in both prostate tumor cells
and capillaries [42], where they can induce sprouting
angiogenesis [43]. These findings along with our own
suggest that PP adipose tissue may modulate prostate
cancer progression via production of growth factors that
favor proliferative and angiogenic events that in turn are
needed for tumor development.

Table 3 Significant canonical pathways (P <0

Pathway - log10 (P)

All (OB/OW versus lean)

Glycerolipid metabolism 2.20

Lysine degradation 2.08

Leptin signaling in obesity 1.78

BPH (OB/OW versus lean)

ERK5 signaling 2.31

b-alanine metabolism 1.83

AMPK signaling 1.81

Parkinson’s signaling 1.77

C21-steroid hormone metabolism 1.77

EPCa (OB/OW versus lean)

Histidine metabolism 1.91

Eicosanoid signaling 1.77

Linoleic acid metabolism 1.73

All (EPCa versus BPH)

Antigen presentation pathway 3.11

Aminosugars metabolism 2.09

B cell development 1.81

OX40 signaling pathway 1.77

ERK5 signaling 1.59

p53 signaling 1.55

Lean (EPCa versus BPH)

T helper cell differentiation 2.24

Galactose metabolism 1.68

Hereditary breast cancer signaling 1.62

Role of osteoblasts, osteoclasts and condrocytes in
rheumatoid arthritis

1.51

OB/OW (EPCa versus BPH)

Synaptic long term depression 2.89

Urea cycle and metabolism of aminogroups 2.10

p53 signaling 2.10

Amyothropic lateral sclerosis signaling 2.02

Aminosugars metabolism 1.89

Extrinsic prothrombin activation pathway 1.73

p70S6K signaling 1.68

Cardiac b-adrenegic signaling 1.51

BPH, benign prostatic hyperplasia; EPCa, extra prostatic cancer; OB/OW,
obese/overweight.
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Table 4 Altered genes in microarray according to prostatic disease status (overall, OB/OW or lean group)

Probe set Gene Name Gene Description Fold Change P

Extra Prostatic Cancer versus Benign Prostatic Hyperplasia

All subjects

7952313 MIRLET7A2 microRNA let-7a-2 2.00 4.26E-06

7957540 MRPL42 mitochondrial ribosomal protein L42 1.63 5.49E-06

7980891 TC2N tandem C2 domains; nuclear 2.25 8.26E-06

7915468 CCDC23 coiled-coil domain containing 23 1.70 1.93E-05

8002020 TPPP3 tubulin polymerization-promoting protein family member 3 1.66 8.62E-05

7980861 CATSPERB cation channel; sperm-associated; beta 1.84 1.48E-04

7964927 TSPAN8 tetraspanin 8 1.91 2.31E-04

8168463 FGF16 fibroblast growth factor 16 1.67 2.93E-04

Lean subjects

7952313 MIRLET7A2 microRNA let-7a-2 2.12 9.04E-05

8024485 GADD45B growth arrest and DNA-damage-inducible; beta -1.56 9.47E-04

7957540 MRPL42 mitochondrial ribosomal protein L42 1.60 9.86E-04

OB/OW subjects

7980861 CATSPERB cation channel; sperm-associated; beta 2.50 1.91E-06

7980891 TC2N tandem C2 domains; nuclear 2.98 4.31E-06

7908488 CFHR1 complement factor H-related 1 1.88 3.16E-05

8078529 STAC SH3 and cysteine rich domain 1.50 5.79E-05

7902400 SNORD45B small nucleolar RNA; C/D box 45B -5.18 1.9E-04

7908459 CFH complement factor H 1.70 3.0E-04

7952313 MIRLET7A2 microRNA let-7a-2 1.88 4.0E-04

7957540 MRPL42 mitochondrial ribosomal protein L42 1.65 4.0E-04

7958019 DRAM1 DNA-damage regulated autophagy modulator 1 1.55 5.3E-04

7969640 CLDN10 claudin 10 1.59 6.3E-04

8076586 SCUBE1 signal peptide; CUB domain; EGF-like 1 -1.73 7.2E-04

8027862 FFAR2 free fatty acid receptor 2 -1.58 9.2E-04

Organ Confined Prostate Cancer versus Benign Prostatic Hyperplasia

All subjects

7919349 RNU1-1 RNA; U1 small nuclear 1 -2.18 1.50E-07

7919576 RNU1-1 RNA; U1 small nuclear 1 -1.96 2.47E-07

7952313 MIRLET7A2 microRNA let-7a-2 1.79 6.21E-05

7980891 TC2N tandem C2 domains; nuclear 1.98 6.26E-05

7978568 RNU1-1 RNA; U1 small nuclear 1 -1.65 9.43E-05

7981964 SNORD116-8 small nucleolar RNA; C/D box 116-8 -1.91 1.07E-04

8004184 XAF1 XIAP associated factor 1 -1.64 8.67E-04

Lean subjects

8001067 HERC2P4 hect domain and RLD 2 pseudogene 4 -1.77 1.22E-06

7997239 PDXDC2 pyridoxal-dependent decarboxylase domain containing 2 -2.12 2.69E-06

8000692 BOLA2 bolA homolog 2 (E, coli) -1.52 3.41E-06

8000651 SMG1 SMG1 homolog; phosphatidylinositol 3-kinase-related kinase (C. elegans) -1.61 3.76E-06

8019655 TBC1D3B TBC1 domain family; member 3B -1.56 1.26E-05

7919349 RNU1-1 RNA; U1 small nuclear 1 -2.30 2.27E-05

7927513 FAM21C family with sequence similarity 21; member C -1.66 2.31E-05

7993359 NPIP nuclear pore complex interacting protein -1.53 4.30E-05

8014633 TBC1D3 TBC1 domain family; member 3 -1.55 5.53E-05

8014437 TBC1D3G TBC1 domain family; member 3G -1.51 6.27E-05

7994026 NPIPL3 nuclear pore complex interacting protein-like 3 -1.69 9.02E-05

OB/OW subjects

7969640 CLDN10 claudin 10 2.01 7.04E-06

7980891 TC2N tandem C2 domains; nuclear 2.31 1.10E-04
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Herein, we showed that the PP adipose tissue gene
expression profile of OB/OW subjects may contribute to
increased local adiposity, a mild immunoinflammatory
environment and production of molecules with onco-
genic potential (Figure 3).
The PP adipose tissue gene expression signature of men

with prostate cancer was determined, in order to deter-
mine if functional alterations are associated with prostate
cancer besides the previously reported PP thickness and
protein measurements [9-12]. In the present study, when
the PP adipose tissues of age- and BMI-matched nondia-
betic men with different prostatic diseases were compared,
119 altered genes were found. Representative genes and
functions are shown in Figure 4. Noteworthy, our findings
reveal that altered gene networks pertain to cell cycle and
proliferation regulation. Overexpressed genes in the PP
adipose tissue of cancer patients that are involved in cell
cycle and proliferation include PLCB1, that modulates
cyclin D3 and CDK4 in response to the IGF-1 mitogenic
stimulus [44] or TPPP3, that regulates G2-M and G1-S
transitions [45]. Furthermore, HAUS1, a component of the
augmin complex involved in spindle microtubule genera-
tion in mitosis [46] and TSPAN8 (also known as CO-029),
that encodes for an integrin-binding glycoprotein that
stimulates endothelial cell proliferation [47], are also
up-regulated in cancer patients. Noteworthy, the FGF16
gene that encodes a mitogenic growth factor [48] was

overexpressed in the PP adipose tissue of men with
prostate cancer. These findings, together with the down-
regulation of XAF1, which influences G2/M arrest through
modulation of checkpoint kinase 1 and Cdc2-cyclin B
complex [49], support a positive cell cycle regulation and a
permissive stimulus for growth and proliferation in PP adi-
pose tissue cells. Cumulatively, pro-apoptotic genes, such
as XAF1 and GADD45B [50,51] were down-regulated,
whereas DRAM1 was up-regulated in the adipose tissue of
prostate cancer patients [52]. Canonical analysis showed
involvement of the p53 pathway in adipose tissue of can-
cer subjects, possibly reflecting the relationship of the
altered genes XAF1, DRAM1 and SMG1 with the p53
pathway. In adipose tissue biology, cell differentiation also
plays an important role in increasing fat mass. Here we
show altered expression of genes that associate with cellu-
lar differentiation of overall (for example, PLCB1,
GADD45B), adipocyte (for example, PLCB1, FFAR2) and
endothelial lineages (for example, SCUBE1) [44]. Thus,
particularly the adipocyte and vascular biology of PP adi-
pose tissue seems to be committed towards the differen-
tiated state in men with prostate cancer. Consistent with
gene expression findings, we observed overexpression of
the microRNA MIRLETA2 in the PP adipose tissue of
prostate cancer patients. The involvement of the let-7
microRNA in adipocyte differentiation has been described
earlier [53]. Moreover, canonical pathways analysis showed

Table 4 Altered genes in microarray according to prostatic disease status (overall, OB/OW or lean group) (Continued)

7952313 MIRLET7A2 microRNA let-7a-2 2.06 1.74E-04

8021101 HAUS1 HAUS augmin-like complex; subunit 1 1.61 3.10E-04

8165698 MIR1977 microRNA 1977 -3.03 3.46E-04

8060854 PLCB1 phospholipase C; beta 1 (phosphoinositide-specific) 1.53 5.95E-04

Extra Prostatic Cancer versus Organ Confined Prostate Cancer

All subjects

7919349 RNU1-1 RNA; U1 small nuclear 1 1.71 1.86E-05

7981964 SNORD116-8 small nucleolar RNA; C/D box 116-8 1.88 1.85E-04

7940287 MS4A1 membrane-spanning 4-domains; subfamily A; member 1 -2.15 2.74E-04

Lean subjects

8001067 HERC2P4 hect domain and RLD 2 pseudogene 4 2.06 5.14E-08

8000692 BOLA2 bolA homolog 2 (E, coli) 1.52 3.37E-06

7997239 PDXDC2 pyridoxal-dependent decarboxylase domain containing 2 2.00 6.36E-06

8000651 SMG1 SMG1 homolog; phosphatidylinositol 3-kinase-related kinase (C. elegans) 1.57 6.75E-06

7927513 FAM21C family with sequence similarity 21; member C 1.74 8.44E-06

7993359 NPIP nuclear pore complex interacting protein 1.51 5.38E-05

7994026 NPIPL3 nuclear pore complex interacting protein-like 3 1.73 5.61E-05

8119595 RPL7L1 ribosomal protein L7-like 1 1.63 5.71E-05

7990943 GOLGA6L10 golgin A6 family-like 10 1.55 6.08E-05

7919349 RNU1-1 RNA; U1 small nuclear 1 1.93 2.25E-04

OB/OW subjects

7980861 CATSPERB cation channel; sperm-associated; beta 1.78 2.92E-04

7982006 SNORD116-29 small nucleolar RNA; C/D box 116-29 1.77 5.84E-04

The bold ones with adjusted P <0.2
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that ERK5 signaling, an evolutionary conserved pathway
involved in hypertrophic signaling that regulates adipo-
genic differentiation [54], was altered in PP adipose tissue
of cancer patients. Previously, in vitro studies showed that
tumor-derived factors induce preadipocyte differentiation
[55], supporting a tumor-educated regulation of the adi-
pose tissue differentiation program. Taken together, the
impact of these gene expression results on cell cycle and
proliferation, in apoptosis and differentiation of PP adipose
tissue cellular components, supports fat mass accrual,
which agrees with findings showing increased PP fat pad
thickness in prostate cancer patients [6]. Furthermore,
bulky adipocytes predispose to increased adipokine secre-
tion and availability of fatty acids, which may influence
prostate cancer progression [32,33].
Immunoinflammatory mechanisms drive both obesity

and cancer. Canonical analysis showed that the PP adipose
tissue of prostate cancer patients presents altered path-
ways associated with immunity and inflammation, includ-
ing antigen presentation, B cell development and T helper
cell differentiation. The complement system is important
in immunosurveillance against tumors, albeit malignant

cells are usually resistant to complement-mediated lysis
[56]. The products of CFH and CFHR1 are soluble com-
plement regulators essential for preventing complement
activation and, therefore, responsible for complement inhi-
bition [56]. Interestingly, we and others report on the
expression of CFH and CFHR1 in adipose tissue [57]. The
finding of CFH and CFHR1 up-regulation in PP adipose
tissue of subjects with prostate cancer suggests increased
inhibitory modulation of the complement activity in pros-
tate tumor cells and evasion to attack. Other altered genes
in the PP adipose tissue of prostate cancer patients with
repercussion in the local immunoinflammatory environ-
ment include MS4A1 (also known as CD20) that plays a
functional role in B-cell activation [58] and FFAR2 that
encodes a protein reported to modulate the differentiation
and/or activation of leukocytes [59]. Taken together, these
altered genes in PP adipose tissue might contribute to an
environment with immunological cellular dormancy and
reduced immunosurveillance, which may facilitate prostate
cancer progression (Figure 4).
In the present study, we found increased CLDN10

mRNA transcript abundance in the PP adipose tissue of

Figure 2 Validation of selected genes by real-time PCR. BPH, benign prostatic hyperplasia; EPCa, extra prostatic cancer (≥pT3); Lean (BMI <25
kg/m2); OB/OW, obese/overweight (BMI ≥25 kg/m2). ANGPT1, angiopoietin 1; CFH, complement factor H; CLDN10, claudin 10; FAS, fatty acid
desaturase; LEP, leptin; MIRLET7A2, microRNA let-7a-2. The gene expression in lean subjects or BHP was assumed to be 1. *P <0.05 versus lean or
BPH groups.
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prostate cancer patients using both microarray and real-
time PCR analyses. To the best of our knowledge
CLDN10 expression in adipose tissue has not been pre-
viously reported. This gene encodes an important tight
junction component with an intriguing role in adipose
tissue considering its functions in the stroma arrange-
ment and cellular connections [60]. Further studies are
required to obtain insight regarding the cells involved
and the functional implications of CLDN10 expression in
PP adipose tissue.
A global gene expression profiling in PP adipose tissue

has been applied for the first time in the present study to
unravel genes and regulatory pathways associated with
OB/OW and with prostate cancer. Subjects included in
this study had histopathological confirmation of prostatic
disease, pathology tumor grade and stage, while contami-
nation with prostate tumor cells in the collected PP adi-
pose tissue samples was excluded by the absence of
PCA3 expression. The high-quality GeneChip data set
from RNA specimens of PP adipose tissue, careful patient
selection for matching by age, race, BMI and clinical vari-
ables underscore the strength of the major findings of
this study. However, further research is warranted to
uncover the PP adipose tissue gene expression profile in
association with distinct obesity grades.
Our findings likely represent the effects of excess adip-

osity or cancer and the bi-directional interactions

between all cell types that influence adipose tissue func-
tion and might affect or be influenced by prostate cancer
progression. These hypotheses are grounded on the
crosstalk between PP adipose tissue and tumor cells,
which ultimately may induce an environment favorable
to cancer progression. A better understanding of the
mechanisms underlying the association between obesity
and aggressive prostate cancer is warranted to gain more
insight into the specific contribution of each PP adipose
tissue cell type to cancer development in order to foster
the development of new treatment options and, at the
same time, to help identify malignancies with the worst
prognosis and encourage the implementation of adjuvant
chemoprevention strategies.

Conclusions
The present study, the first in human PP adipose tissue
in which OB/OW and prostate cancer-associated gene
expression changes are analyzed by microarrays, pro-
vides valuable new insight on how local adipose tissue
pathophysiology may favor prostate cancer. We identi-
fied altered gene expression that might impact on ele-
ments of white adipose tissue overgrowth, including
anti-lipolytic, anti-apoptotic, proliferative, and mild
local immunoinflammatory stimuli in PP fat of OB/
OW subjects. The overexpression of LEP and ANGPT1
by PP adipose tissue in OB/OW men may contribute

Figure 3 Schematic summary diagram of PP adipose tissue changes in obese/overweight. Genes with altered expression are associated
with the regulation of functional biological processes. Altered function likely results in chronic mild immunoinflammatory response and fat mass
expansion, which ultimately impacts on prostate cancer progression. Down-regulated genes are depicted in green while up-regulated genes are
shown in red. ASCs, adipose-derived stem cells; E-M-T, epithelial-to-mesenchymal transition.
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towards a favorable environment for prostate cancer
progression.
The gene expression signature of PP adipose tissue

from prostate cancer patients seems to provide evidence
of altered gene expression across distinct cell types, with
repercussions on stimuli for cell cycle regulation, cell
proliferation and differentiation, as well as anti-apopto-
sis. Additionally, we found altered genes involved in
immunological cell dormancy and reduced immunosur-
veillance, namely complement-related CFH and CFHR1
genes. Our findings suggest that the PP adipose tissue
gene expression profile of both OB/OW and prostate
cancer subjects is likely to cause a local environment
favorable to prostate cancer progression. Confirmation
of the role of PP adipose tissue in prostate cancer pro-
gression together with untangling its mechanisms will
become increasingly important in the development of
adjuvant therapeutic and lifestyle measures.

Additional material

Additional file 1: Additional File 1, Table S1. Significant functions with
altered networks and molecules in PP adipose tissue of OB/OW subjects.

Additional file 2: Additional File 2, Figure S1. Representative network
and genes differently expressed in OB/OW versus lean in IPA analysis.
Genes are represented as nodes and the biological relationship between
two nodes is represented as an edge line. Uncolored genes were not
identified as differently expressed in our experiment even though they
are relevant to this network. Node shape indicates enzymes (rhombus),
phosphatases (triangle), kinases (inverted triangle), G-protein coupled
receptor (rectangle), growth factor (square), transporter (trapezoid),
transcription factor (ellipse), other (circle).

Additional file 3: Additional File 3, Table S2. Significant functions with
altered networks and molecules in PP adipose tissue of EPCa versus BPH
subjects.
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