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Abstract

Background: The British STRATIFY tool was previously developed to predict falls in hospital.
Although the tool has several strengths, certain limitations exist which may not allow
generalizability to a Canadian setting. Thus, we tested the STRATIFY tool with some modification
and re-weighting of items in Canadian hospitals.

Methods: This was a prospective validation cohort study in four acute care medical units of two
teaching hospitals in Hamilton, Ontario. In total, 620 patients over the age of 65 years admitted
during a 6-month period. Five patient characteristics found to be risk factors for falls in the British
STRATIFY study were tested for predictive validity. The characteristics included history of falls,
mental impairment, visual impairment, toileting, and dependency in transfers and mobility.
Multivariate logistic regression was used to obtain optimal weights for the construction of a risk
score. A receiver-operating characteristic curve was generated to show sensitivities and
specificities for predicting falls based on different threshold scores for considering patients at high
risk.

Results: Inter-rater reliability for the weighted risk score indicated very good agreement (inter-
class correlation coefficient = 0.78). History of falls, mental impairment, toileting difficulties, and
dependency in transfer / mobility significantly predicted fallers. In the multivariate model, mental
status was a significant predictor (P < 0.001) while history of falls and transfer / mobility difficulties
approached significance (P = 0.089 and P = 0.077 respectively). The logistic regression model led
to weights for a risk score on a 30-point scale. A risk score of 9 or more gave a sensitivity of 91%
and specificity of 60% for predicting who would fall.

Conclusion: Good predictive validity for identifying fallers was achieved in a Canadian setting using
a simple-to-obtain risk score that can easily be incorporated into practice.
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Background

Falls account for at least 40% of all accidents in hospital
[1]. Risk of hip fracture was found to be 11 times greater
in hospital patients compared to those in the community
[2]. Patient characteristics implicated in falls that occur in
hospitals include history of falls, difficulty in transfers or
ambulating, dizziness and balance, delirium, visual
impairment, medications, incontinence and toileting fre-

quency [3-5].

Clinical prediction rules are tools designed to predict
health outcomes and assist health care professionals plan
patient care. These tools typically include three or more
risk factors from a patient's history or physical exam that
predict an outcome such as falls [6]. The STRATIFY tool
was developed and validated in the United Kingdom to
predict falls occurring in hospital. The tool contains five
clinical factors associated with falling (e.g. previous falls,
mental impairment) with a simple scoring system. The
tool incorporates many of the features that instrument
developers desire including 1) predictive validity: high
sensitivity and specificity for predicting falls, 2) feasibility;
the items are easily and rapidly assessed by nursing staff
with minimal staff training required, and 3) reproducibil-
ity; the predictive variables and the decision rule were
tested in different geriatric settings [7].

However the STRATIFY tool has limitations. Altman [8,9]
pointed out that falls, rather than patients, were outcomes
in the STRATIFY study, which could inflate predictive
validity. Specifically, of 217 patients, 71 falls occurred
(approximately a 30% rate of falls) [6]. Prediction might
also have been weakened by the absence of item weight-
ing as certain patient characteristics may have greater
value in predicting falls. Price [10] emphasized that the
use of data on falls in hospital to update risk scores in the
STRATIFY study, would inflate the calculated predictive
validity and decrease useful prediction. In fact, the major-
ity of falls occur in the first week of hospitalization
[11,12]. Finally, the use of items in the tool having varying
interpretations (e.g. agitation) may compromise repro-
ducibility. 1deally, each question in a clinical tool should
be interpreted in the same way.

We tested the predictive validity of the STRATIFY variables
in a Canadian setting, with the objective of determining if
it predicts fallers rather than patient falls. We constructed
a weighted risk score based on the components of the
STRATIFY tool and examined its predictive validity.

Methods

Setting and participants

Data were collected over a 6-month period in 2000 at
Hamilton Health Sciences, Hamilton, Ontario, Canada, a
multi-site teaching hospital. Patients over 65 years of age
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admitted consecutively to four general medical units hav-
ing a total of 114 beds were assessed. Palliative and critical
care patients were excluded.

Definition of clinical outcome

The clinical outcome we studied was "fallers" versus "non-
fallers". "Fallers" were those having one or more falls dur-
ing hospitalization. A fall was defined as an individual
involuntarily coming to rest on the ground or surface
lower than their original station [13]. The attending nurse
documented each fall on an incident report and in the
patient chart. Nurses completing the risk assessment tool
were blinded to the rationale for assessing predictor vari-
ables. Incident reports noted time of fall, location, injury
sustained, type of fall, and potential causative factors.
Only falls occurring after screening were included as an
outcome.

Predictive variables: identification and definition

Five patient characteristics found to be risk factors for falls
in the British STRATIFY study [7] were assessed. Items
were modified for the Canadian health care system to
include the definitions of the risk factor to potentially
increase reproducibility (Table 1 [see Additional file 1]).
Mental status was divided into three concepts, "disorien-
tation", "confusion", and "agitation" and definitions were
added. Similarly, "vision impairment" was assessed based
on four questions and "history of falls" was divided into
two questions. Toileting assessment remained one item as
in STRATIFY but the wording was altered and a definition
was added. As in the original tool the "transfer and mobil-
ity" measure was taken from the Barthel Index [14] and
was the sum for transfer (0 to 3) and mobility (0 to 3)
scores for a total ranging from of 0 (dependent) to 6
(independent).

Screening assessment scoring

The nurses completing the screening tool had a 10-min
orientation session run by the clinical nurse specialists
who were part of the investigative team. The assigned
nurse collected screening variables 24 to 48 hours after the
patient was admitted to hospital in a 5-min bedside
session.

To calculate predictive validity, each of the five items were
scored dichotomously as 1 = present, and 0 = absent for
items 1 to 4. The risk factors were deemed to be "present"
if one or more of the statements were considered within
each domain (Table 1 [see Additional file 1]). For exam-
ple, mental impairment was present if one or more of con-
fusion, disorientation or agitation were scored "yes". If
none of these variables were present, then the risk factor
was scored as "absent". Scores of 0 to 3 for the transfer and
mobility sub-score corresponded to the presence of the
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Table I: Odds ratio (OR) and 95% confidence intervals (Cl) from the univariate and multivariate logistic regression models.

Item Univariate Analysis Multivariate Analysis

OR 95% Cl P-value OR 95% Cl P-value
History of falls 2.47 (1.23,4.96) 0.011 1.88 (0.91,3.89) 0.089
Mental Status 6.07 (2.86,12.86) <0.001 4.06 (1.81,9.16) <0.001
Vision Impaired 1.02 (0.51, 2.05) 0.946 1.09 (0.53,2.24) 0.824
Toilet Difficulty 2.79 (1.37,5.67) 0.005 1.20 (0.52,2.75) 0.669
Transfer / Mobility 3.71 (1.83,7.50) <0.001 2.10 (0.92,4.78) 0.077

risk factor and scores of 4 to 6 were considered to repre-
sent absence of the risk factor.

Statistical analyses

Each of the five items was assessed individually and col-
lectively for their predictive power based on logistic
regression models. The variables were also used to pro-
duce an overall risk score using two approaches. First, an
unweighted risk score (r) was computed by simply count-
ing the number of risk factors present. This gave a risk
score ranging from O to 5, as in the original STRATIFY
study.

Second, a weighted risk score was obtained based on the
regression coefficients from the multivariate logistic
regression model in which the outcome was the fall status
of the patient. Specifically, the relative magnitude of the
beta coefficients from the multivariate logistic model
reflects the relative prognostic strength of the risk factors
when they are jointly considered. Therefore the relevant
information for the construction of the weights is the rel-
ative size of the beta coefficients and any weights, which
preserve these ratios, will preserve good predictive validity
(see Appendix [Additional File 1] for further details).

To consider predictive validity in terms of sensitivity and
specificity one must consider two populations, "fallers"
and "non-fallers". Two receiver operating characteristic
curves (ROC) were constructed to display the varying spe-
cificity and sensitivity values applicable to the range of
possible thresholds of unweighted (0 - 5) and weighted
risk (0 - 30) scores that could be used to classify patients
as high risk for falling or not. All analyses were performed
using the Statistical Analysis System (SAS release 8.1).

Inter-rater reliability

Two nurses independently assessed a sub-sample of 35
patients. The order of assessments was random and asses-
sors were blind to the findings of the other nurse. The
required sample size was estimated at 33 patients, with
power = 0.80 and alpha = 0.05 using published power

tables [15]. The inter-class correlation coefficient (ICC)
was computed for the weighted and un-weighted risk
scores. The kappa statistic was computed on reliability of
classification into "high" versus "normal" risk based on
the optimal threshold score.

Results

Over 6 months, 620 patients were screened for falls. The
mean age was 78 years (SD 7.7) and 338 (54.5%) patients
were female. The diagnoses most responsible for hospital-
ization in the sample were circulatory disorders (45.2%),
respiratory disorders (20.8%), digestive disorders (4.0%)
and mental disorders (2.9%). Diagnosis was not predic-
tive of falls. Thirty-four patients (5.5%) fell at least once
during their hospitalization and there were a total of 77
falls. In total, 171 patients (27.6%) had a history of falls
at admission.

Predictive variables

Based on univariate logistic regression (Table 1) history of
falls prior to admission (P = 0.011), mental status (con-
fused, disoriented or agitated) (P < 0.001), toileting diffi-
culties (P = 0.005) and transfer / mobility difficulties (P <
0.001) predicted falls. When the inter-correlations
between these independent variables were controlled for
using multiple logistic regression (Table 1), only mental
status (P < 0.001) remained a significant predictor. In
terms of the magnitude of the associations from this mul-
tivariate model the odds of falling increased over four fold
in individuals with mental impairment (odds ratio (OR)
= 4.06; 95% CI: 1.81,9.16). History of falls and transfer/
mobility difficulties incurred an approximate two-fold
increase in risk while approaching significance (P = 0.089
and P = 0.077 respectively).

When length of stay was added to the multivariate model,
the odds ratios associated with each risk factor were
slightly attenuated. However, the pattern of results
remained the same and mental status was most predictive,
followed by history of falls, and then transfer/mobility
difficulties.
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Receiver operating characteristic curve (ROC) for weighted (0 — 30) and unweighted (0 — 5) risk score

A weighted risk formula (Appendix I) was derived which
shows the relative magnitude of the regression coefficients
from the multivariate logistic regression model. This for-
mula can easily be used to calculate the weighted risk
score.

ROC curves

The ROC curves based on the unweighted and weighted
risk scores are given in Figure 1 and sensitivities and spe-
cificities are displayed for a subset of possible threshold
values in Table 2. As the weighted risk score (R) is
increased from 0, the sensitivity falls very little until one
reaches a false positive rate of about 0.40, which corre-
sponds to R = 9. Balancing sensitivity and specificity, we
selected this as the ideal cut-off score, which results in a

sensitivity of 91.2% (95% CI: 81.6, 100.7) and specificity
of 60.2% (95% CI: 56.3, 64.2). With a threshold of 9, the
tool would correctly classify over 90% of those patients at
high risk for falling and over 60% of those at normal risk.
When the cut-off score increases to 20, specificity
increases slightly (78.8%), however, sensitivity signifi-
cantly falls (55.9%).

The ROC curve for the un-weighted risk score (r) (Figure
1) had poorer predictive validity. For example, when two
or more risk factors are present (r < 2), sensitivity was
91.2%, but specificity was only 49.3%. Increasing r to 3 or
more risk factors resulted in an increase in specificity to
71.3% but sensitivity dropped to an unacceptable 61.8%.
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Table 2: Sensitivities and specificities for threshold of weighted risk score (0 — 30)

Risk Score False Positive Rate False Negative Rate Sensitivity Specificity

0 100.0 0.0 100.0 (100.0,100.0) 0.0 (0.0, 0.0)

| 81.7 2.9 97.1 (91.4,102.7) 18.3 (15.1,21.4)
2 61.3 5.9 94.1 (86.2,102.0) 38.7 (34.842.7)
3 59.0 5.9 94.1 (86.2,102.0) 41.0 (37.0,44.9)
6 529 8.8 91.2 (81.6,100.7) 47.1 (43.1,51.1)
7 50.5 8.8 91.2 (81.6,100.7) 49.5 (45.4,53.5)
8 43.0 8.8 91.2 (81.6,100.7) 57.0 (53.0,61.0)
9 39.8 8.8 91.2 (81.6,100.7) 60.2 (56.3,64.2)
10 34.1 14.7 85.3(73.4,97.2) 65.9 (62.0,69.7)
13 323 20.6 79.4 (65.8, 93.0) 67.7 (64.0,71.5)
14 31.4 23.5 76.5 (62.2,90.7) 68.6 (64.8,72.4)
15 27.5 29.4 70.6 (55.3, 85.9) 72.5 (68.9,76.1)
16 24.7 324 67.6 (51.9,83.4) 75.3 (71.8,78.7)
17 22.7 382 61.8 (45.4,78.1) 77.3 (73.9,80.7)
20 21.2 44.| 55.9 (39.2, 72.6) 78.8 (75.5,82.1)
21 19.6 529 47.1 (30.3, 63.8) 80.4 (77.2,83.6)
22 17.1 61.8 38.2 (21.9, 54.6) 82.9 (79.9,86.0)
23 15.2 67.6 32.4 (6.6, 48.1) 84.8 (81.9,87.7)
24 8.2 735 26.5 (11.6,41.3) 91.8 (89.6,94.0)
27 4.6 79.4 20.6 (7.0, 34.2) 95.4 (93.7,97.1)
28 4.1 79.4 20.6 (7.0, 34.2) 95.9 (94.3,97.5)
29 3.8 79.4 20.6 (7.0, 34.2) 96.2 (94.7,97.8)
30 2.2 85.3 14.7 (2.8, 26.6) 97.8 (96.6,99.0)

Inter-rater reliability

The inter-rater reliability between the two nurses using the
weighted risk score gave an ICC of 0.78 (95% CI: 0.60,
0.88). The reliability of the binary classification of high /
normal risk gave kappa = 0.63 (95% CI: 0.36, 0.90). The
unweighted risk score gave a similar reliability (ICC =
0.68; 95% CI: 0.46, 0.83).

Discussion

Falls in the elderly are often a symptom of acute medical
problems in combination with underlying risks such as
medications, postural hypotension and lower extremity
weakness. Identifying those at risk allows targeted assess-
ment and intervention such as a review of medications
and environmental modifications [16]. This study dem-
onstrated good predictive validity for the modified SRAT-
IFY tool to identify individuals at risk of falling in acute
care. With a risk score of 9, sensitivity was 91% and specif-
icity was 60%. The falls risk assessment tool can be easily
incorporated into practice without added burden to the
patient. The findings were achieved with a conservative
methodology in which the outcome measure was the
patient (i.e. fallers), rather than falls, and the risk score
was generated before any falls. Despite minimal nurse
training and short completion time, we were able to
obtain very good inter-rater reliability (ICC = 0.78). A
recent analytic review of falls risk assessment tools found
that only two of five tools used in acute care with a sensi-

tivity over 80 described how long the tool took to com-
plete and only one had findings reproduced by other
investigators. Many did not report inter-rater reliability
[17].

Risk factors included in screening for falls in hospitalized
patients have largely been consistent across studies with
varying methods. Findings have repeatedly emphasized
falls history, mental impairment, toileting frequency, and
general mobility as predictive variables for falls [7,18-23].
Nevertheless, it is not yet clear how to maximize predic-
tion. The variables included in different studies do not
overlap entirely and some studies incorporate variables
with poor or inconsistent predictive validity. For example,
visual impairment had poor predictive value in our study
and no significant predictive value in Morse's study [24].
Oliver et al. included visual impairment as a variable in
STRATIFY based on an initial study phase in which it was
moderately predictive (OR = 3.55), and appeared to rank
fifth strongest among 10 clinical variables described [7].
However, their design did not include a control for inter-
correlations among risk factors. Also, relevant to optimiz-
ing prediction is the fact that Morse's study [24] and ours
are the only ones to include weightings derived from
quantitative analysis. Item weighting was clearly impor-
tant to optimize prediction.

Page 5 of 7

(page number not for citation purposes)



BMC Medicine 2004, 2

Studies have also differed in the suggested ideal risk score
cut-offs to consider patients in the "at risk" group.
Whether our suggested cut-off of 9 is ideal for different
hospital settings is not known. One approach is to use the
cut-off that maximizes predictive power mathematically.
Practitioners in different settings may adjust the trade-off
between sensitivity and specificity, based on differing falls
rates, values, laws, funding and other factors.

Our finding of poor predictive validity with the
unweighted items does not clearly amount to poor gener-
alization across settings because the items and protocol
were changed. Studies involving tests of prediction tools
in new locations have found results that are weaker than
the original findings [25]. The difficulty obtaining gener-
alized (i.e. reproducible) effects is concerning. One expla-
nation may be that the base rate for occurrence of a
clinical outcome is known to affect positive predictive
value [24,25]. Our base rate for falls was 5.5%, which is
lower than that found in the British study and may have
contributed to lower predictability. Another possibility is
that prediction may only be consistent among patients
with similar characteristics, resulting in generalization
across some settings and not others.

A potential methodological limitation is uncertainty
about patient incident reports, which may not capture all
falls, however our documented rate of falls was similar to
previous years in our setting. There is also the possibility
that completing risk assessments influences how nurses
respond to patients in terms of falls prevention strategies
(i.e. Hawthorne effect). It is unknown if this factor
affected the true rate of falls in our setting. However, it is
predicted that this effect is likely minimal given that
strong consistent falls prevention strategies were not in
place at the time of the study. Another potential limitation
is that despite some changes to scale items taken from
STRATIFY to improve reproducibility; there is still room
for error. For example, patient recall of falls may not be
accurate and consistent. This may have accounted for an
inter-rater reliability that was lower than ideal. The prob-
lem stresses a potential need to improve operational defi-
nitions of risk variables to ensure reproducibility in
measuring items such as mental status. It may help to
have consensus among investigators on key issues includ-
ing: which variables to include, operational definitions of
risk constructs, the duration over which risk is assessed
(i.e. within 24 or 48 hours), the way in which users should
be trained, and what the appropriate outcomes are (e.g.
falls versus fallers). Further replication of our study in
other settings will help to correct upon these limitations
and improve generalizability.

http://www.biomedcentral.com/1741-7015/2/1

Conclusions

We found good predictive validity for identifying fallers in
hospital in a Canadian setting after weighting risk factors.
Assessment of fall risk is one of the essential quality indi-
cators for care of the older adult.
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