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Abstract
Background: Although neuroanatomical and cognitive sequelae of low birthweight and preterm birth
have been investigated, little is understood as to the likely prevalence of a history of low birthweight or
preterm birth, or neuroanatomical correlates of such a history, within the special educational needs
population. Our aim was to address these issues in a sample of young people receiving additional learning
support.

Methods: One hundred and thirty-seven participants aged 13–22 years, receiving additional learning
support, were recruited via their schools or colleges and underwent structural magnetic resonance
imaging (MRI). Obstetric records, available in 98 cases, included birthweight and gestational data in 90 and
95 cases, respectively. Both qualitative and quantitative voxel-based analyses of MRI data were conducted.

Results: A history of low birthweight and preterm birth was present in 13.3% and 13.7% of cases,
respectively. Low birthweight and preterm birth were associated with specific qualitative anomalies,
including enlargement of subarachnoid cisterns and thinning of the corpus callosum. Low birthweight was
associated with reduced grey matter density (GMD) in the superior temporal gyrus (STG) bilaterally, left
inferior temporal gyrus and left insula. Prematurity of birth was associated with reduced GMD in the STG
bilaterally, right inferior frontal gyrus and left cerebellar hemisphere. Comparison of subjects with no
history of low birthweight or preterm birth with a previously defined control sample of cognitively
unimpaired adolescents (n = 72) demonstrated significantly greater scores for several anomalies, including
thinning of the corpus callosum, loss of white matter and abnormalities of shape of the lateral ventricles.

Conclusion: Although a two-fold increased prevalence of a history of low birthweight and preterm birth
exists within the special educational needs population, other aetiological factors must be considered for
the overwhelming majority of cases. Neuroanatomical findings within this sample include qualitative
anomalies of brain structure and grey matter deficits within temporal lobe structures and the cerebellum
that persist into adolescence. These findings suggest a neurodevelopmental mechanism for the cognitive
difficulties associated with these obstetric risk factors.
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Background
Intellectual disability is a lifelong disability that is associ-
ated with considerable cost to society and often consider-
able limitations to the quality of life of affected
individuals. A widely employed definition of intellectual
disability is that of the American Association on Mental
Retardation (AAMR), which requires three criteria to be
met: (1) the presence of sub-average intellectual function-
ing, comprising an intelligence quotient (IQ) of less than
70; (2) the presence of impaired adaptive functioning,
comprising deficits within domains such as academic or
occupational functioning, social skills and activities of
daily living; and (3) an onset prior to the age of 18 years
[1]. The prevalence of intellectual disability, as defined by
an IQ of below 70, is primarily determined by the statisti-
cal distribution of IQ within the population, and a review
of epidemiological studies indicated a prevalence of about
3% in school age children [2]. In Scotland, 2.2% of chil-
dren aged 5–16 years are registered with the Support
Needs System (SNS) as having additional support needs
(expressed as a percentage of the total child population of
the NHS Board areas covered by the SNS) [3].

Low birthweight (less than 2500 g) and preterm birth
(less than 37 weeks' gestation) are relatively common
within developed countries, affecting approximately 7%
(see [4]) and 6% (see [5]) of all births, respectively, and
are associated with an increased risk of significant neu-
ropsychiatric morbidity, particularly in terms of cognitive
impairments and an enhanced risk of neurodevelopmen-
tal disorders such as attention-deficit hyperactivity disor-
der [6-9].

Low birthweight and preterm birth are also known to be
associated with a range of qualitative and quantitative
abnormalities of brain structure. Low birthweight is asso-
ciated with ventricular dilatation, white matter loss and
thinning of the corpus callosum [10,11] and cortical thin-
ning in parietal, temporal and occipital lobes and cortical
thickening in frontal and occipital lobes [12]. Preterm
birth is associated with similar qualitative anomalies,
including ventricular dilatation, white matter loss and
corpus callosal thinning [13], as well as periventricular
leukomalacia and basal ganglia haemorrhage [14], and
quantitative abnormalities in terms of reduced hippocam-
pal and caudate volumes [15-17], reduced cerebellar vol-
umes [18,19], reduced cortical grey matter volumes in
parieto-occipital regions [20], thinning of the corpus cal-
losum [21], increased temporal lobe gyrification [22] and
enlargement of the occipital and temporal horns and
body of the lateral ventricles [20,23].

Our understanding of the neuroanatomical and cognitive
sequelae of these conditions is largely derived from longi-
tudinal cohort studies, investigating brain structure and

cognitive impairments within groups of subjects identi-
fied, either at the time of birth or during subsequent
recruitment from clinical samples, as being born preterm
and/or with a low birthweight. To the best of our knowl-
edge, no study has as yet examined these issues within a
cohort of cognitively impaired individuals, recruited as
such via the educational system. Consequently, little is
understood as to the likely prevalence of a history of low
birthweight or preterm birth, or neuroanatomical corre-
lates of such a history, within the special educational
needs population.

This study addresses these issues within a clinically well
cohort of young people receiving additional learning sup-
port at school, recruited as part of a longitudinal study
investigating the prevalence and evolution of psychopa-
thology within adolescents with special educational needs
because of an apparent intellectual disability in compari-
son to a control group of normally developing young peo-
ple [24]. Structural magnetic resonance imaging (MRI)
findings reported within this cohort include an increased
range and degree of qualitative anomalies of brain struc-
ture in adolescents receiving educational support as com-
pared with the controls [25], structural abnormalities
within right cerebellar, left parieto-temporal and posterior
corpus callosal regions in intellectually impaired subjects
as compared with controls, and abnormalities within the
thalamus and left superior temporal gyrus of intellectually
impaired subjects with (as compared with those without)
autistic features [26], and associations between symptom
severity of anxiety, incoherence of speech, hallucinations
and delusions and grey matter density in a range of brain
regions, including lateral and medial temporal lobe struc-
tures and the thalamus [27]. In the present study we
undertook retrospective review of maternity records to
retrieve birthweight and gestational age data, and investi-
gated the relationship between low birthweight and pre-
term birth and brain structure on MRI during adolescence
using qualitative and quantitative MRI analysis methods.

Methods
Subjects
One hundred and thirty-seven young people aged 13–22
years receiving additional learning support at their school
or college of education were included in this study. The
recruitment of these participants has been described else-
where [24]: in brief, they were recruited via their schools
and colleges as part of a larger longitudinal research pro-
gramme examining the mental health needs of individu-
als with special education needs for cognitive reasons.
Inclusion criteria were the receipt of additional learning
support, and age between 13 and 22 years. Exclusion cri-
teria were a history of brain trauma, Down syndrome or
other syndromal disorders, major sensory impairments,
absence of speech or major cerebral palsy. The intelligence
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quotient (IQ) of all participants was assessed using the
WISC-R [28] for participants under 16 years of age, and
the WAIS-R [29] for those over 16 years of age. All partic-
ipants and their parents or legal guardians provided writ-
ten informed consent, and ethical permission for the
study was received from the Multi-Centre Research Ethics
Committee for Scotland.

Acquisition of obstetric data
Additional written informed consent was sought from all
participants and their mothers in order to examine their
obstetric records, held centrally by the Information and
Statistics Division of the National Health Service of Scot-
land. Where consent was provided and records were avail-
able, data concerning birthweight and gestational age
were extracted. Low birthweight was defined as a birth-
weight of less than 2500 g and preterm birth was defined
as a gestational age of less than 37 weeks.

Image acquisition
All participants were scanned on the same 1.5 T GE MRI
scanner (GE Healthcare, Milwaukee, WI) with a 3D inver-
sion-recovery prepared T1-weighted coronal gradient
echo sequence, yielding 128 contiguous 1.7 mm coronal
slices of 256 × 192 voxels (acquisition parameters: TR/TE/
TI/NEX 8.1/3.3/600/1, flip angle 15°, field of view 220
mm). All scans were visually inspected blind to clinical
and obstetric data prior to inclusion within the analysis.
Scans from an additional 19 participants were excluded
from this study: in eighteen cases this was due to insuffi-
cient image quality for voxel-based morphometric (VBM)
analysis, primarily because of magnetic interference from
dental braces and movement artefact, and in one case this
was due to massive porencephaly observed in the scan
which was incompatible with VBM analysis. The 137
included subjects did not differ from the 19 excluded sub-
jects in terms of gender (χ2 = 1.122, degrees of freedom
(df) = 1, p = 0.289), age (F = 0.397, p = 0.530) or IQ (F =
0.081, p = 0.777).

Qualitative MRI assessment
All MRI scans were assessed by a neuroradiologist (RJG)
experienced in paediatric neuroradiology who was blind
to clinical and obstetric details, according to a standard-
ised checklist of qualitative anomalies of brain structure
[25]. The checklist comprises 36 separate anomalies of
ventricles, other cerebrospinal fluid (CSF) spaces, grey
and white matter features as well as other developmental
anomalies. Items were defined as normal, moderately
abnormal or markedly abnormal (scoring 0, 1 or 2,
respectively) as described elsewhere [25]. A total abnor-
mality score for each scan was generated by adding
together the scores (0, 1 or 2) for all 36 checklist items.
Use of this checklist is associated with a high degree of
interobserver and intraobserver agreement [25]. MRI

scans were inspected using the multi-planar rendering
software, MRIcro [30], and by direct visual inspection of
films on a conventional light box.

Voxel-based morphometry
Image processing was performed using the Statistical Par-
ametric Mapping package (SPM99; The Wellcome Depart-
ment of Imaging Neuroscience, University College
London), running in Matlab version 6.5.1 (The Math
Works, Natick, MA). VBM analysis was performed using
an adaptation of the optimised methodology proposed by
Good et al [31], whereby we used non-linear warping of
extracted brains to a study specific template to recover the
remapping non-linear warps necessary for scan normali-
sation, as previously described [27]. To compensate for
potential normalisation residuals in the statistical analy-
sis, the normalised total brain volume was taken as a cov-
ariate in the analysis of VBM results. All scans were
segmented in normalised space using study specific a pri-
ori tissue maps created specifically for this cohort [31,32].
The normalised grey matter images were smoothed using
a 12 mm full width at half maximum (FWHM) Gaussian
kernel [33].

Statistical analysis
Qualitative anomaly scores from subjects with and with-
out a history of low birthweight and prematurity were
compared using the two-tailed Mann-Whitney U test.

VBM correlation analyses were conducted to examine the
linear associations between grey matter density (GMD)
and the degree of obstetric adversity (in terms of birth-
weight and gestational age). Owing to the non-linear
nature of the effects of these parameters (the effect of
increasing birthweight is different below, within and
above the normal birthweight range, and a comparable
non-linearity exists for gestational age) obstetric data was
transformed from absolute values to figures representing
the degree of adversity, as follows: (i) the 'degree of low
birthweight' was taken as zero where the birthweight was
greater than or equal to 2500 g, or as the difference from
2500 g where the birthweight was below this level; and
(ii) the 'degree of prematurity' was taken as zero where the
gestational age was 37 weeks or more, or as the difference
from 37 weeks where the gestational age was less than
this.

All analyses were performed using a multiple regression
model in SPM99, and were adjusted for age, gender and
normalised total brain volume by including them as cov-
ariates. T-contrast results were generated as statistical par-
ametric maps with a threshold set at an uncorrected
significance level of T = 3.2. Voxelwise correction for mul-
tiple comparisons was performed using Gaussian random
fields theory within SPM99 [33]. Maximum voxel results
Page 3 of 11
(page number not for citation purposes)



BMC Medicine 2008, 6:1 http://www.biomedcentral.com/1741-7015/6/1
with p < 0.05 (corrected for multiple comparisons) were
considered significant, and coordinates of significant vox-
els were converted from Montreal Neurological Institute
(MNI) space to Talairach and Tournoux [34] space using
the Matlab script mni2tal.m [35]. Where significant corre-
lations were found, we extracted GMD values for these
loci, conducted linear regression analyses in SPSS 14.0
(SPSS for Windows, Rel. 14.0.0. 2005. Chicago: SPSS
Inc.), and examined plots of GMD against birthweight
and gestational age.

Results
Subject characteristics
A total of 137 scans from 85 male and 52 female partici-
pants, with mean age 15.9 (SD = 1.6, range 13.1–22.4)
and mean IQ 73.0 (SD = 16.5, range 40–131) were
included in this study. Obstetric data was available for 98
participants: these participants did not differ from those
in whom obstetric data was unavailable in term of gender
(χ2 = 0.006, df = 1, p = 0.939), age (F = 0.059, p = 0.809)
or IQ (F = 1.193, p = 0.277).

Birthweight data was available for 90 subjects, of whom
12 were recorded as having low birthweight (< 2500 g),
with a mean birthweight of 1730 g (SD = 559.4 g, range
880–2480 g) as compared with a mean of 3399 g (SD =
510.4 g, range 2520–4900 g) among those participants
with normal birthweight.

Gestational age data was available for 95 subjects, of
whom 13 were recorded as being born prematurely (ges-
tational age < 37 weeks), with a mean gestational age of
33.2 weeks (SD = 3.5 weeks, range 25–36 weeks) as com-
pared with a mean gestational age of 40.4 weeks (SD = 2.2
weeks, range 37–50 weeks) among the remaining partici-
pants.

Qualitative analysis
Low birthweight was associated with significantly higher
scores for enlarged subarachnoid cisterns (U = 294.0, Z =
-3.119, p = 0.002). Prematurity was associated with signif-
icantly higher scores for white matter high intensity of
myelination delay (U = 492.0, Z = -2.512, p = 0.012),
arachnoid cysts (U = 439.0, Z = -2.248, p = 0.025),
enlarged subarachnoid cisterns (U = 406.0, Z = -2.071, p
= 0.038) and thinning of the corpus callosum (U = 408.5,
Z = -1.982, p = 0.048). No significant associations were
detected between these obstetric parameters and the total
qualitative abnormality score.

VBM analysis: correlates of low birthweight (n = 90)
Significant negative correlations between GMD and the
degree of low birthweight were detected in the right supe-
rior temporal gyrus (STG; pcorrected = 0.009), left STG (pcor-

rected = 0.031), left inferior temporal gyrus (ITG; pcorrected =

0.040) and left insula (pcorrected = 0.049); see Figure 1 and
Table 1.

VBM analysis: correlates of prematurity (n = 95)
Significant negative correlations between GMD and the
degree of prematurity were detected in the left STG (pcor-

rected = 0.007), right inferior frontal gyrus (pcorrected =
0.009), right STG (pcorrected = 0.026) and the posterior lobe
of the left cerebellar hemisphere (pcorrected = 0.036); see
Figure 2 and Table 1.

Correlations of extracted GMD with birthweight and 
gestational age
In the case of participants with low birthweight, extracted
GMD data from the loci of all significant VBM results
demonstrated significant correlations with birthweight
for the right STG (r = 0.704, p = 0.011), the left STG (r =
0.742, p = 0.006) and the left insula (r = 0.716, p = 0.009),
but not the left ITG (r = 0.434, p = 0.159). No significant
correlations were found to exist between birthweight and
GMD data for subjects with birthweight of at least 2500 g.

In the case of participants with preterm birth, extracted
GMD data from the loci of all significant VBM results
demonstrated significant correlations with gestational age
for the left STG (r = 0.738, p = 0.004), the right IFG (r =
0.681, p = 0.010), the right STG (r = 0.793, p = 0.001) and
the left cerebellar hemisphere (r = 0.564, p = 0.045). No
significant correlations were found to exist between gesta-
tional age and GMD data for subjects with gestational age
of at least 37 weeks, although the associations between
gestational age and extracted GMD from the right STG and
right IFG demonstrated trends towards significance (r =
0.204, p = 0.066) and (r = 0.184, p = 0.097), respectively.

These correlations are presented in Figures 3 and 4, and
support the validity of existing thresholds for low birth-
weight (< 2500 g) and preterm birth (< 37 weeks) against
reduced GMD as an outcome measure of adversity. The
trends to significant relationships between gestational age
and GMD in the right STG and right IFG of non-preterm
subjects suggest that there may be a mildly advantageous
effect associated with gestational ages beyond 37 weeks.
Whilst interesting, this trend requires replication within
further and larger samples.

Comparison with control group (73 versus 72)
It is therefore clear that in this sample recruited from the
educational system both low birthweight and preterm
birth are associated with an excess of demonstrable struc-
tural brain anomalies. The question of the extent to which
these obstetric adversities could account for the differ-
ences demonstrated between the group with special edu-
cational needs as a whole and the controls is obviously
raised and this was addressed by comparing (i) a group of
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73 participants, comprising the 137 participants investi-
gated within this study, with the exclusion of those with a
history of low birthweight or preterm birth and those for
whom no birthweight or gestational age data was availa-
ble; and (ii) the same control group (n = 72) as described
in our previous report [26], recruited as the cognitively
unimpaired siblings, friends and associates of the sub-
jects, and comprising 34 males and 38 females with mean
age 16.7 years (SD = 2.1) and mean IQ 101.3 (SD = 15.9).

The group of subjects with no history of low birthweight
or preterm birth had significantly higher scores than con-
trols for thinning of the corpus callosum (U = 2268.0, Z =
-2.622, p = 0.009), loss of white matter (U = 2375.5, Z = -

2.388, p = 0.017), abnormal shape of the lateral ventricles
(U = 2183.0, Z = -2.302, p = 0.021) and blunting of the lat-
eral angles of the frontal horns of the lateral ventricles (U
= 2155.5, Z = -2.134, p = 0.033); (two-tailed Mann-Whit-
ney U test applied to the data).

Discussion
Although obstetric data were not universally available, we
were able to retrieve birthweight and gestational age data
for about 70% of participants and subjects for whom such
data were and were not available did not differ on a range
of baseline characteristics. One of the most notable find-
ings to emerge from these analyses was the low prevalence
of a history of low birthweight and preterm birth within

Correlations between increasingly low birthweight and reduced GMD in different areas of the brainFigure 1
Correlations between increasingly low birthweight and reduced GMD in different areas of the brain. (A) The 
right STG (pcorrected = 0.009). (B) The left STG (pcorrected = 0.031). (C) The left ITG (pcorrected = 0.040). (D) The left insula (pcor-

rected = 0.049). The coloured bar represents the Z statistic for plotted results. Results are plotted onto the SPM99 canonical T1 
image for the purpose of illustration.
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this cohort. Despite the large size of this cohort (we were
able to retrieve birthweight and gestational age data for 90
and 95 participants, respectively), only 12 (13.3%) and
13 (13.7%) cases, respectively, had a history of low birth-
weight and preterm birth. Although this represents an
approximately two-fold increase as compared with previ-
ously reported prevalences of these conditions within
developed world populations as a whole, of 7% (see [4])
and 6% (see [5]), respectively, it indicates that for the
overwhelming majority of individuals within the special
needs population, aetiological factors other than low
birthweight and preterm birth must be considered for the
cognitive impairments.

The association between these obstetric adversities and
increased rates of occurrence of corpus callosal thinning
and arachnoid cysts is consistent with previous qualitative
MRI analyses demonstrating similar findings [13,14]. Low
birthweight and preterm birth were both associated with
enlarged subarachnoid cisterns. Although this anomaly
has been reported to be more prevalent among patients
with schizophrenia as compared with controls [36], it is
generally considered as a benign finding in infants and
children [37,38]. No association was found to exist
between these obstetric parameters and the total abnor-
mality score, indicating firstly that the non-low-birth-
weight/preterm participants also had a relatively high rate
of structural abnormalities (reflecting the fact that all sub-
jects were in receipt of additional learning support), and

also suggesting that the anomalies reported here occur as
specific structural associates of low birthweight and pre-
maturity rather than as part of a generalised increase in the
overall degree of abnormality of brain structure. This find-
ing is supported by the fact that, following the exclusion
of those subjects with a history of low birthweight or pre-
term birth (and those in whom lack of data meant we
were unable to rule out such a history), comparison with
a previously defined cognitively unimpaired control
group [26] demonstrated increased rates of occurrence of
several structural anomalies, including corpus callosal
thinning, loss of white matter and lateral ventricular
anomalies, providing further evidence for significant
structural abnormalities within the non-low-birthweight/
preterm subjects with educational difficulties resulting
from cognitive impairment.

Our quantitative analyses demonstrated a pattern of
abnormalities of brain structure, predominantly within
temporal lobe areas, associated with low birthweight and
preterm birth. Children born preterm or with low birth-
weight are at risk of significant cognitive impairment into
childhood [6,39]. Given the critical role of temporal lobe
structures in language, memory and learning, and the
demonstration of abnormalities of structure [8,12,22]
and function [40,41] within these brain areas in preterm
birth and low birthweight, it is evident that disrupted cor-
tical development within the temporal lobes may be

Table 1: VBM correlations between obstetric adversity and grey matter density. Stereotactic coordinates are quoted within standard 
Talairach and Tournoux space [34].

Region x y z Cluster size (voxels) p-value (maximal voxel) Figures

Degree of low birth-weight (n = 90), df = 85, uncorrected t = 3.2

GMD associations
Positive correlations with GMD

None detected
Negative correlations with GMD

Right STG 50 -1 -12 6131 0.009 1(A), 3(A)
Left STG -50 -4 -11 2640 0.031 1(B), 3(B)
Left ITG -46 -55 -11 1497 0.040 1(C), 3(C)
Left insula -38 -9 12 2098 0.049 1(D), 3(D)

Degree of prematurity (n = 95), df = 90, uncorrected t = 3.2

GMD associations
Positive correlations with GMD

None detected
Negative correlations with GMD

Left STG -50 -4 -10 2416 0.007 2a, 4a
Right IFG 45 7 28 873 0.009 2b, 4b
Right STG 51 -17 -7 2216 0.026 2c, 4c
Left cerebellar hemisphere -20 -86 -23 3189 0.036 2d, 4d
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important in the pathogenesis of the cognitive difficulties
associated with these peri-natal risk factors.

We also identified a correlation between gestational age
and GMD within the left cerebellar hemisphere of indi-
viduals born preterm. Previous volumetric studies
reported reduced cerebellar volume in adolescents born
very preterm [18,19], with significant associations being
identified between cerebellar size and cognitive function.
Given the traditional association between cerebellar dys-
function and motor in-coordination, these findings may

explain the well-documented association between pre-
term birth and later coordination disorders [42-44].

To our knowledge, this is the first study to investigate the
prevalence and neuroanatomical correlates of a history of
low birthweight and preterm birth in a clinically well sam-
ple of individuals within the special educational needs
system. In contrast with previous studies, this sample was
not selected in order to identify individuals with a history
of obstetric adversities, but instead was recruited via an
educational route (in terms of being in receipt of addi-
tional learning support at school) and retrospective

Correlations between increasing prematurity of birth and reduced GMD in different areas of the brainFigure 2
Correlations between increasing prematurity of birth and reduced GMD in different areas of the brain. (A) The 
left STG (pcorrected = 0.007). (B) The right IFG (pcorrected = 0.009). (C) The right STG (pcorrected = 0.026). (D) The left cerebellar 
hemisphere (pcorrected = 0.036). The coloured bar represents the Z statistic for plotted results. Results are plotted onto the 
SPM99 canonical T1 image for the purpose of illustration.
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review of these obstetric parameters was subsequently
conducted. This sampling approach lends an important
strength to this study, in that the sample of cases is free
from sources of bias associated with the use of selected
clinic samples, is representative of a large population of
individuals within our educational system and lends new
insight into previously unaddressed issues affecting this
population.

Conclusion
A recent US Institute of Medicine report estimated that
preterm birth in the US cost society US$26.6 billion in
2005, with US$1.1 billion representing the cost of provi-

sion of special educational services, and stated the need
for outcome studies extending into adolescence [45]. Our
findings indicate that, although a two-fold increased prev-
alence of a history of low birthweight and preterm birth
exists within the special educational needs population,
other aetiological factors must be considered for the over-
whelming majority of cases. Neuroanatomical findings
within this sample are concordant with those previously
reported within cognitively unimpaired preterm birth/
low birthweight cohorts, comprising qualitative anoma-
lies of brain structure and grey matter deficits, particularly
of the temporal lobes and cerebellum, that persist into
adolescence.

Scatterplots of birthweight against extracted GMDFigure 3
Scatterplots of birthweight against extracted GMD. (A) The right STG. (B) The left STG. (C) The left ITG. (D) The left 
insula. Data from participants with low birthweight (< 2500 g) is shown in red and data from participants with birthweight of at 
least 2500 g is shown in blue.
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