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Abstract
Background: Alzheimer's disease (AD) is characterized by neurodegeneration and changes in
cellular processes, including neurogenesis. Proteolytic processing of the amyloid precursor protein
(APP) plays a central role in AD. Owing to varying APP processing, several β-amyloid peptides (Aβ)
are generated. In contrast to the form with 40 amino acids (Aβ40), the variant with 42 amino acids
(Aβ42) is thought to be the pathogenic form triggering the pathological cascade in AD. While total-
Aβ effects have been studied extensively, little is known about specific genome-wide effects
triggered by Aβ42 or Aβ40 derived from their direct precursor C99.

Methods: A combined transcriptomics/proteomics analysis was performed to measure the effects
of intracellularly generated Aβ peptides in human neuroblastoma cells. Data was validated by real-
time polymerase chain reaction (real-time PCR) and a functional validation was carried out using
RNA interference.

Results: Here we studied the transcriptomic and proteomic responses to increased or decreased
Aβ42 and Aβ40 levels generated in human neuroblastoma cells. Genome-wide expression profiles
(Affymetrix) and proteomic approaches were combined to analyze the cellular response to the
changed Aβ42- and Aβ40-levels. The cells responded to this challenge with significant changes in
their expression pattern. We identified several dysregulated genes and proteins, but only the
cellular retinoic acid binding protein 1 (CRABP1) was up-regulated exclusively in cells expressing
an increased Aβ42/Aβ40 ratio. This consequently reduced all-trans retinoic acid (RA)-induced
differentiation, validated by CRABP1 knock down, which led to recovery of the cellular response
to RA treatment and cellular sprouting under physiological RA concentrations. Importantly, this
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effect was specific to the AD typical increase in the Aβ42/Aβ40 ratio, whereas a decreased ratio did
not result in up-regulation of CRABP1.

Conclusion: We conclude that increasing the Aβ42/Aβ40 ratio up-regulates CRABP1, which in turn
reduces the differentiation potential of the human neuroblastoma cell line SH-SY5Y, but increases
cell proliferation. This work might contribute to the better understanding of AD neurogenesis,
currently a controversial topic.

Background
Alzheimer's disease (AD) is a genetically heterogeneous
disorder because mutations in multiple genes are
involved along with non-genetic factors [1]. The risk may
be determined by the effects of numerous loci, some of
which may produce only minor contributions. Amyloid
precursor protein (APP), presenilin1, presenilin2 and the
apolipoprotein E ε4 allele have been associated with AD
[2,3]. These genes are assumed to be responsible for
approximately 50% of the genetic background of the dis-
ease, suggesting that further susceptibility genes exist.
Genetic analyses of kindred with AD have pointed to β-
amyloid peptides (Aβ) as the initiating molecules in the
development of the disease.

Biochemical work on APP processing revealed that patho-
genic mutations alter processing in such a way that more
Aβ42 is produced. Genetic and biochemical data together
suggested that Aβ42 accumulation was the primary event
in the pathogenesis of AD. Aβ42, but not the more abun-
dant Aβ40, may cause neuronal dysfunction and trigger
neurodegeneration in vivo [4,5]. APP is cleaved by β-secre-
tase within its ectodomain, resulting in the generation of
the C-terminal fragment C99, which is further cleaved by
the γ-secretase complex. APP processing results in the
release of different peptides. To focus on Aβ, we used the
standard construct that maintains APP sorting and the rel-
evant processing events [6,7]. The pathological mecha-
nism of how Aβ42 or Aβ40 acts is unclear. To elucidate the
underlying mechanisms, we used a combined transcrip-
tomic-proteomic approach and utilized APP point muta-
tions to modulate the Aβ42/Aβ40 ratio. Using a genome and
proteome-wide approach provided us with the maximum
amount of information possible. We identified cellular
retinoic acid binding protein 1 (CRABP1) as the exclusive
transcript and protein showing strong differential expres-
sion as a consequence of an increased Aβ42/Aβ40 ratio.
Accordingly, cells with the increased Aβ42/Aβ40 ratio
showed a reduced ability to differentiate. Remarkably, a
decreased Aβ42/Aβ40ratio did not affect CRABP1 expres-
sion. CRABP1 is involved in retinoic acid (RA)-induced
differentiation [8-10] and is expected to play a crucial role
in neurogenesis [11].

Neurogenesis is reported to be enhanced in the hippoc-
ampi [12] of patients with AD [13] where it may produce

cells to replace neurons lost in the disease [14]. The effect
of AD on neurogenesis has recently been reproduced in a
transgenic mouse model [15] in which APP mutations
lead to increased incorporation of BrdU and expression of
immature neuronal markers in two neuroproliferative
regions: the dentate gyrus and the subventricular zone. As
neurogenesis is increased in these mice in the absence of
neuronal loss, it might be triggered by more subtle disease
manifestations, for example the initial accumulation of
the Aβ peptide. In transgenic mice, overexpressing famil-
ial AD variants of APP and/or PS1 dramatically dimin-
ished survival of newborn neurons 4 weeks after birth [16].
This data hints at an increased neurogenesis in AD, but in
contrast to this, also point to early detrimental events
shortly after the neurons are born.

Methods
For details, see the Additional file 1.

Plasmids
C99 encoding sequences were cloned into a pCEP4 vector
(Invitrogen) resulting in the following constructs: pCEP4-
spA4ct-DA-WT, pCEP4-spA4ct-DA-I45F and pCEP4-
spA4ct-DA-V50F. The plasmid constructs have been
described previously [6,7].

Cell line, cell culture and transfections
Human neuroblastoma SH-SY5Y cells [17,18] were cul-
tured in 50% Minimum Essential Medium (MEM; Sigma)
and 50% Nutrient Mixture F-12, HAM (Sigma), supple-
mented with 10% fetal bovine serum (FBS; PAN), 1%
non-essential amino acid solution (Sigma) and 1% L-
Glutamin (Sigma), in a humidified atmosphere with 5%
CO2. We transfected 70% confluent cells with the con-
structs described previously.

Preparation of cell lysates and collection of conditioned 
media
We added 5 ml culture medium to 70% confluent cells in
a 10 cm culture dish and conditioned media were col-
lected after 16–48 hours. The conditioned media were
centrifuged at 4°C for 1 minute at 13,000 rpm and the
supernatants were used for immunoprecipitation of solu-
ble secreted Aβ. Cell lysates were prepared by harvesting
and lysing cells on ice in lysis buffer supplemented with
Complete® protease inhibitor (Roche).
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Immunoprecipitation
Conditioned media were immunoprecipitated with pro-
tein G-Sepharose (Sigma) and the antibodies G2–10 and
G2–11. The immunoprecipitated proteins were separated
on 12% Tris-Tricine gels.

Western blotting and antibodies
Western blot analysis was performed as described else-
where [19]. Briefly, proteins were detected with the anti-
body W02, specific for residues 1–10 of Aβ.

Transcriptomics and data analysis
Gene chip analysis was performed according to the
Expression Analysis Technical Manual (Affymetrix) with
minor modifications: Briefly, total RNA was extracted
using the Qiashredder-Kit, RNeasy Midi-columns and the
RNase-free DNase set (Qiagen). A total of 20 μg of RNA
was reverse transcribed into cDNA by using oligo(dT)
primers (Proligo) and the Superscript™ Double-Stranded
cDNA Synthesis Kit (Invitrogen). We in vitro transcribed
3.3 μl of purified cDNA using the BioArray™ High Yield™
RNA Labeling Kit (Enzo Life Sciences). We fragmented 15
μg of purified cRNA using the GeneChip® Eukaryotic
Hybridization Control Kit (Affymetrix). We hybridized 15
μg of fragmented cRNA to whole genome HG-U133 A and
HG-U133 B oligonucleotide arrays. Chips were washed,
stained, scanned and the quality of the created dat-file
images was evaluated by using MAS 5.0 and Gene Operat-
ing Software GCOS 1.2 (Affymetrix). The quality of each
sample was controlled (see Additional file 1). Transcrip-
tomic data was analyzed with MAS 5.0, GCOS 1.2 (both
Affymetrix) and Array Assist 3.3 (Stratagene). Chp-files
were created by using the PLIER algorithm. P-values were
calculated from three independent experiments using
either a two class unpaired t-test or one-way analysis of
variance (ANOVA). Further data analysis was performed
with Excel (Microsoft). For data normalization, filtering
details and data output, see Additional files 1, 2 and 3.

Quantitative real-time polymerase chain reaction and 
selection of an endogenous control for normalization
Total RNA, was reverse transcribed into cDNA using ran-
dom hexamer primers included in the High-Capacity
cDNA Archive Kit (Applied Biosystems). This cDNA was
amplified and measured by using TaqMan® Gene expres-
sion assays (Applied Biosystems). Cycling conditions
were 50°C for 2 minutes, 95°C for 10 minutes, followed
by 40 cycles of 95°C for 15 seconds and 60°C for 1
minute. Relative quantification was performed with the 2-

ΔCT method. For normalization, an endogenous control
was selected out of 10 candidate controls using the Taq-
Man® Human Endogenous Control Plate (Applied Biosys-
tems).

Proteomics: two-dimensional difference gel 
electrophoresis
Briefly, dried cell pellets were solubilized in lysis buffer,
centrifuged and supernatant proteins were labeled with
Cy3 as well as Cy5, so that each sample was labeled in a
dye-switch manner. Cy2 was used as fluorophor for the
internal standard. First dimension isoelectric focusing was
performed on Immobilized pH-Gradient Gel Strips pH 3–
10 Non-Linear (GE Healthcare). Second dimension
sodium dodecyl sulfate polyacrylamide gel electrophore-
sis (SDS-PAGE) was performed on 12.5% isocratic 254 ×
200 × 1 mm3 gels [20]. CyDye fluorescence images were
acquired on a laser scanner (GE Healthcare) and protein
abundance changes were analyzed with the DeCyder™ 3.0
Software (GE Healthcare) [21]. For subsequent mass spec-
trometry the proteins were stained with colloidal
Coomassie Brilliant Blue [22] and protein spots were
excised manually.

Protein identification
Proteins were identified as described recently [23]. Briefly,
an automated platform [24] was used to digest the pro-
teins in-gel with trypsin and to prepare the proteolytic
peptides for matrix assisted laser desorption ionization
time-of-flight mass spectrometry (MALDI-TOF-MS). For
each sample a peptide mass fingerprint (PMF) spectrum
and fragment ion spectra of up to four selected precursor
ions were acquired within the same automated analysis
loop using an Ultraflex I mass spectrometer (Bruker Dal-
tonics). Database searches were performed with the Mas-
cot Software 2.0 (Matrix Science). Only proteins
represented by at least one peptide sequence above the
significance threshold in combination with the presence
of at least four peptide masses assigned in the PMF were
considered as identified.

RNA interference
siRNAs were double-stranded [25,26] pre-designed,
annealed Silencer™ siRNAs (Ambion). To transiently
knock down CRABP1, 30 nM siRNA was used. After 48
hours following transfection with siRNA, total RNA was
extracted from the cells and the extent of knock down was
measured by real-time polymerase chain reaction (real-
time PCR).

Differentiation assay
SH-SY5Y cells were treated with 0.1–1000 nM RA, in the
absence or presence of serum for 2–10 days. Differentia-
tion was evaluated by checking the length, shape and
number of outgrowing protrusions by phase contrast
microscopy at appropriate times. Phase contrast pictures
were taken from living neuroblastoma cells.
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Results
We studied the transcriptomic and proteomic response to
an altered Aβ42/Aβ40 ratio in human neuroblastoma cells.
An increased or decreased Aβ42/Aβ40 ratio revealed differ-
entially expressed transcripts, of which the 60 most up-
regulated were used here. For the corresponding pro-
teomic approach the 20 most up-regulated proteins were
selected to validate altered protein expression. Only the
overlap of transcriptomic and proteomic data was used
for further analysis. To analyze altered Aβ generation in a
controlled manner, C99-overexpression constructs encod-
ing the C-terminal part of APP (C99) were used [6,7]. This
peptide is identical to the APP-derived C99, the ultimate
precursor for Aβ generation. C99 is processed by γ-secre-
tase in the same manner as APP-derived C99, making it an
ideal substrate to study γ-secretase function or its cleavage
products Aβ42 and Aβ40 without the influence of β-secre-
tase. Since, due to a point mutation, the constructs gener-
ated peptides only differing in a single amino acid outside
the Aβ domain (at position 45 or 50, C99I45F and
C99V50F, respectively) compared with the wild-type con-
struct (C99WT), they were ideal for gene expression pro-
filing, enabling us to minimize potential technical
variation influencing gene expression.

Single independent clones of the human neuroblastoma 
cell line SH-SY5Y, overexpressing C99, were selected and 
checked for Aβ42 and Aβ40 generation
SH-SY5Y cells were stably transfected with constructs cod-
ing for the APP C-terminal fragment C99WT, and also
with constructs bearing the point mutations C99I45F and
C99V50F and the vector only (negative control) (Figure
1).

The purpose for using these mutations was their ability to
strongly shift the Aβ42/Aβ40 ratio in either direction, as
previously demonstrated in detail [6]. This was confirmed
here (Figure 2).

As expected and described in detail [6,7] C99I45F and
C99V50F had an opposite effect on the Aβ species gener-
ated: C99I45F is mainly processed to Aβ42, resulting in a
dramatic increase of the secreted Aβ42/Aβ40 levels (relative
ratio approximately 20.4 compared with the Aβ42/Aβ40
ratio in C99WT); C99V50F is mainly processed to Aβ40
(relative ratio approximately 0.3 compared with C99WT)
[6].

CRABP1 was up-regulated in the mutant with an increased 
Aβ42/Aβ40 ratio
Genome- and proteome-wide expression profiles of the
human neuroblastoma cell line SH-SY5Y were combined
and compared with each other (Figure 3).

Three single independent clones each from C99WT,
C99I45F and C99V50F (Figure 1) were used for transcrip-
tomic and proteomic analyses (mock-transfected cells as
negative control).

For transcriptomics, whole genome HG-U133 A and B
chips were used. Replicates were prepared and hybridized
on different days and were derived from different inde-
pendent clones. Data analysis was performed by calculat-
ing the mean of three independent single clones.

C99 overexpression in independent cell clonesFigure 1
C99 overexpression in independent cell clones. SH-
SY5Y cells were stably transfected with a pCEP-vector con-
taining the amyloid precursor protein C-terminal fragment 
C99WT, and constructs bearing the point mutations 
C99I45F and C99V50F. The same cell line was transfected 
with an empty vector (negative control). Eight clones (clone 
1–3 for C99WT, clone 1–3 for C99I45F and clone 1–2 for 
C99V50F) with approximately similar expression levels and 
C99V50F clone 3, showing stronger expression, were 
selected and used for transcriptome and proteome analysis. 
Apart from analyzing the complete set of three clones, data 
analysis for the transcriptomic approach was also performed 
by excluding clone 3 (C99V50F) resulting in no significant dif-
ference compared to the triplicates.

Aβ42 and Aβ40 generated from their direct precursor C99 in independent cell clonesFigure 2
Aβ42 and Aβ40 generated from their direct precursor 
C99 in independent cell clones. Aβ42 and Aβ40 were 
immunoprecipitated from conditioned media of SH-SY5Y 
cells, overexpressing C99, using specific antibodies for Aβ42 
and Aβ40. Both Aβ species were detected by Western blot-
ting using antibody W02. C99 is intracellularly cleaved, gen-
erating different amounts of Aβ42 and Aβ40 in C99I45F and 
C99V50F. C99I45F generates more Aβ42 than Aβ40, whereas 
C99V50F generates more Aβ40 than Aβ42.
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For proteomics, three clones each from C99WT, C99I45F
and C99V50F were pooled, then proteins were extracted,
CyDye labeled and analyzed by two-dimensional differ-
ential in-gel electrophoresis (2D-DIGE, Figure 4).

Up-regulated proteins were identified by mass spectrome-
try [24]. Only the intersection of the transcriptomic and
proteomic approach was used for further analysis, thus
increasing the reliability of the data (Table 1).

CRABP1 was the second most up-regulated protein of the
whole proteome and the second most up-regulated tran-
script of approximately 20,000 tested transcripts, when
only chip A was considered (22,283 probe sets).

A direct comparison of both mutants revealed CRABP1 as
strongly up-regulated in C99I45F compared with

C99V50F. This comparison revealed an effect mediated by
a changed Aβ42/Aβ40 ratio, because both mutants
expressed inverse levels of Aβ42 and Aβ40 respectively
(Table 2).

However, neurofilament 3 (NEF3), neurofilament light
polypeptide 68 kDa (NEFL) and internexin neuronal
intermediate filament protein alpha (INA) were not dif-
ferentially expressed (Table 2). We regard this unaltered
expression of neurofilaments as mediated by C99, since
C99 is expressed in similar amounts in both mutants and
hence a comparison between these two mutants results in
a fold change close to 1.0 (not differentially expressed).

A comparison of SH-SY5Y cells transfected with the
C99WT encoding construct versus SH-SY5Y cells trans-
fected with the empty vector (mock) provides informa-
tion about the effect mediated by C99 (Table 3).

Neurofilaments (NEF3, NEFL, INA) were down-regulated
as a consequence of C99 overexpression. CRABP1 was not
differentially expressed, supporting our view that C99 is
not responsible for CRABP1 dysregulation.

Differential expression of CRABP1 was confirmed by real-
time PCR
Expression of CRABP1 was measured by quantitative real-
time PCR with cyclophilin A as an endogenous normaliza-
tion control (cyclophilin A was selected out of 10 normali-
zation controls; see Additional file 1). Measurements
reflect the mean of three independent clones, measured in
triplicate. The fold change for CRABP1 of mutant C99I45F
(Aβ42/Aβ40↑) compared with C99WT was 4.1 (standard
deviation of the fold change: ± 2.3). In contrast to this, the
differential expression of CRABP1 was below our defined
cut-off (<1.9) for C99V50F (Aβ42/Aβ40↓) compared with
C99WT and thus was regarded as not differentially
expressed.

Cells with an increased Aβ42/Aβ40 ratio up-regulated 
CRABP1, which made cells less sensitive to RA
CRABP1 is involved in RA metabolism and transport [27]
and we found it up-regulated as a consequence of an
increased Aβ42/Aβ40 ratio. This raised the question of
whether cells with an increased Aβ42/Aβ40 ratio show
altered responses to RA treatment. SH-SY5Y cells were sta-
bly transfected with the constructs increasing or lowering
the Aβ42/Aβ40 ratio (Figure 2). These cells were treated
with 0.1–1000 nM RA in the absence or presence of
serum. After 6 days, differentiation was evaluated by
observing the length and number of outgrowing protru-
sions by phase contrast microscopy (Figure 5, 1A and 5,
1B).

Overlap of differentially expressed transcripts and proteins revealed CRABP1 up-regulation specific for an increased Aβ42/Aβ40 ratioFigure 3
Overlap of differentially expressed transcripts and 
proteins revealed CRABP1 up-regulation specific for 
an increased Aβ42/Aβ40 ratio. Comparison of C99I45F or 
C99V50F versus C99WT revealed differentially expressed 
transcripts, of which each of the 60 most up-regulated were 
used here. The 20 most up-regulated proteins each were 
selected for the corresponding proteomic approach. An 
intersection of the transcriptomic and proteomic data was 
subsequently performed. Only the intersection of both 
approaches (four transcripts and proteins) was used for fur-
ther analysis. Out of these four, only CRABP1 was up-regu-
lated in C99I45F, whereas no differential expression was 
found in C99V50F (both mutants compared to C99WT). The 
remaining three transcripts and proteins were differentially 
expressed in both mutants. The proteomic approach was 
performed blinded by an independent laboratory. The term 
'differentially expressed' was applied when the fold change 
exceeded a threshold of at least 1.9 either on the transcript 
or protein level.
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Furthermore, the cell shape and number of cells were eval-
uated. We selected 1 nM RA for the subsequent functional
validation and C99I45F-transfected cells were treated with
1 nM RA for 6 days (Figure 5, 1A). No signs of differenti-
ation were observed, irrespective of the cell confluency
and duration of RA treatment (cells were checked daily by
light microscopy for up to 10 days). In contrast to this, the
cells expressing C99V50F (Figure 5, 2A) showed differen-
tiation at 1 nM RA treatment for 6 days: the cells were
approximately 30–60% confluent and did not reach
100% confluency after 10 days. Cells had an average of
two to four protrusions. This differentiation was observed
from 0.1–10 nM RA, which approximately corresponds to
physiological plasma concentrations [28,29]. At concen-
trations of 100 nM or more RA, differentiation could also
be observed for the C99I45F transfected cell line.

CRABP1 knockdown rescued the differentiation potential 
of Aβ42 overproducing human neuroblastoma cells after 
RA treatment
If an increased Aβ42/Aβ40 exerts the diminished differenti-
ation behavior via CRABP1, a CRABP1 knockdown in
C99I45F cells should rescue this effect. We administered
30 nM siRNA to C99I45F SH-SY5Y cells for 24 hours in
combination with a treatment of 0.1–1000 nM (1 nM
shown in Figure 5) for 2.5 to 4 days in the absence (data
not shown) or presence of serum. Serum withdrawal can
mimic differentiation ('pseudo differentiation') and was
therefore excluded from further analysis. A more than
50% knockdown of CRABP1 was detected by quantitative
real-time PCR (p = 0.0002, n = 3).

Differentiation was evaluated after 2.5 days and 4 days.
Knockdown of CRABP1 in combination with 1 nM RA
(Fig. 5, 2B–2D) resulted in a strong change of cell shape,
whereas transfection with a nonsense sequence, com-
bined with 1 nM RA (negative control, Figure 5, 1B–1D)
did not alter the shape of the cells. The strongest differen-

CRABP1 was up-regulated specifically for an increased Aβ42/Aβ40 ratio demonstrated by 2D-DIGEFigure 4
CRABP1 was up-regulated specifically for an increased Aβ42/Aβ40 ratio demonstrated by 2D-DIGE. Two-dimen-
sional polyacrylamide gel electrophoresis of CyDye-labeled proteins, extracted from SH-SY5Y cells. C99I45F and C99V50F 
were compared with C99WT. Differentially expressed proteins, evaluated by intensity of merged colors (Cy5, Cy3), were 
identified by mass spectrometry. Arrows indicate CRABP1.

Table 1: CRABP1 was up-regulated in mutant C99I45F (Aβ42/Aβ40↑) only, whereas mutant C99V50F (Aβ42/Aβ40↓) showed no 
differential expression of CRABP1

Name Fold change C99I45F/C99WT Fold change C99V50F/C99WT P-value

Transcriptomics Proteomics Transcriptomics Proteomics Transcriptomics Proteomics

CRABP1 2.7 2.6 1.3 -1.1 0.123 0.032
NEF3 2.6 3.1 2.3 2.7 0.038 0.01
NEFL 2.2 2.3 2.2 2.5 0.032 0.004
INA 1.8 1.8 1.6 1.9 0.056 0.002

Comparisons of both mutants with C99WT. The overlay of transcriptomics and proteomics revealed four differentially expressed transcripts and 
proteins respectively. Out of these four, only CRABP1 was differentially expressed in C99I45F whereas C99V50F showed no differential expression 
of CRABP1 (compared with C99WT). One-way analysis of variance (ANOVA) was performed for C99WT, C99I45F and C99V50F. CRABP1, 
cellular retinoic acid binding protein 1 (NCBI accession of the protein identified by proteomics: gi|48146151); NEF3, neurofilament 3 (gi|67678152); 
NEFL, neurofilament light polypeptide 68 kDa (gi|105990539); INA, internexin neuronal intermediate filament protein alpha (gi|14249342).
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tiation was observed at 1 nM RA. No differentiation could
be observed for treatment with siRNA, but without RA or
treatment with 1 nM RA, but without siRNA (data not
shown). After CRABP1 knockdown and RA-treatment the
cells were approximately 30–80% confluent (Figure 5,
2B–2D) and did not reach 100% confluency after 10 days.
The extent of interconnections between cells was clearly
increased (Figure 5, 2D) compared with the negative con-
trol (Figure 5, 1D). See Additional file 1 for an enlarged
picture.

Three further genes associated with RA metabolism were 
differentially expressed as a consequence of a changed 
Aβ42/Aβ40 ratio and may have influenced the effects 
mediated by RA
Three further genes may have influenced the effects medi-
ated by RA. Chip analysis revealed the following differen-
tial expression: Cytochrome P450 family 26 subfamily B
polypeptide 1 (CYP26B1), a RA-metabolizing enzyme
[27], was found to be up-regulated 1.8-fold (p = 0.01, n =
3) in C99I45F (Aβ42/Aβ40↑), whereas C99V50F (Aβ42/
Aβ40↓) showed no differential expression (compared with
C99WT). Direct comparison of both mutants (C99I45F/
C99V50F) revealed a 2.6-fold up-regulation for CYP26B1
in mutant C99I45F (p = 0.02, n = 3). Retinoic acid recep-

tor (RAR)-related orphan receptor B (RORB) was down-
regulated 2.0-fold (p = 0.049, n = 3) in C99V50F (com-
pared with C99WT), whereas it was not differentially
expressed in C99I45F. RAR beta (RARB) was not differen-
tially regulated in C99V50F, whereas it was up-regulated
1.4-fold (p = 0.05, n = 3) in C99I45F (compared with
C99WT).

Discussion
Human instead of murine cells were used for transcrip-
tomics and proteomics to facilitate potential comparabil-
ity with patient-derived data sets. The human
neuroblastoma cell line SH-SY5Y has characteristics close
to primary neurons, is used to demonstrate differentiation
processes [30-33] and is a frequently used neural cell line
for microarray studies [34-37].

Association between AD and RA
Associations between AD and RA transport and metabo-
lism are known [38,39]. It was shown that disruption of
the retinoid signaling pathway causes a deposition of Aβ
in the adult rat brain [40]. RA amounts are determined by
many regulatory proteins, such as retinoid binding pro-
teins, retinoid anabolizing and catabolizing enzymes
[41]. CYP26B1 has been linked to AD and psychosis [42].

Table 2: Direct comparison between the two mutants (C99I45F versus C99V50F) showed CRABP1 as up-regulated in C99I45F (Aβ42/
Aβ40↑) whereas neurofilaments were not differentially expressed

Name Fold change C99I45F/C99V50F P-value

Transcriptomics Proteomics Transcriptomics Proteomics

CRABP1 2.3 2.8 0.188 0.059
NEF3 1.1 -1.1 0.790 0.56
NEFL 1.1 -1.1 0.640 0.51
INA 1.1 -1.1 0.679 0.24

Direct comparison of C99I45F and C99V50F (baseline experiment, C99V50F) revealed effects mediated by an altered Aβ42/Aβ40 ratio for CRABP1 
by a fold change distinctly deviating from 1.0, and an effect mediated by C99 for neurofilament 3 (NEF3), neurofilament light polypeptide 68 kDa 
(NEFL) and internexin neuronal intermediate filament protein alpha (INA) by a fold change close to 1.0, because C99 was approximately equally 
expressed in both mutants. Significance was determined performing an unpaired t-test for the direct comparison of both mutants. As to be 
expected, p-values were high for not differentially expressed genes [62,63].

Table 3: CRABP1 was not differentially expressed in consequence of C99-overexpression in contrast to neurofilaments

Name Fold change C99WT/mock P-value

Transcriptomics Proteomics Transcriptomics Proteomics

CRABP1 1.0 1.4 0.979 0.042
NEF3 -3.4 -1.8 0.024 0.086
NEFL -3.0 -1.3 0.039 0.11
INA -1.9 -1.3 0.069 0.029

Comparison between C99WT and mock-transfected cells revealed effects mediated by C99. Neurofilament 3 (NEF3), neurofilament light 
polypeptide 68 kDa (NEFL) and internexin neuronal intermediate filament protein alpha (INA) were down-regulated as a consequence of C99-
overexpression. CRABP1 was not differentially expressed (cut-off for differential expression at least 1.9 on the transcript or protein level, 
respectively).
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One crucial mechanism whereby the availability of RA is
regulated is by binding to CRABP1. CRABP1 is a protein
with a molecular weight of 15.4 kDa, localized in the cyto-
plasm. The gene is strongly conserved in evolution and is
assumed to play an important role in RA-mediated differ-
entiation and proliferation processes. It may regulate the
access of RA to the nuclear RARs. In the adult brain the
two main regions of RA signaling are the olfactory bulb
and the hippocampus [43]; both regions are predomi-
nantly affected in late onset Alzheimer's disease (LOAD)
[41]. CRABP1 and RA are inversely regulated [44].
CRABP1 binds RA and prevents its entering the nucleus

and in cells with low CRABP1 expression RA enters the
nucleus and binds to RARs [8-10].

An association between CRABP1 and Aβ has not yet been
established. In this study we have demonstrated that an
increased Aβ42/Aβ40 ratio resulted in CRABP1 up-regula-
tion. Furthermore, we demonstrated that up-regulated
CRABP1 reduced the differentiation potential of SH-SY5Y
cells. C99I45F-transfection of SH-SY5Y cells resulted in
differentiation only if exposed to 100 nM or more of RA,
but the same cell line showed already strong differentia-
tion at 1 nM RA when CRABP1 was knocked down by

Increased Aβ42/Aβ40 ratio reduced responsiveness of SH-SY5Y cells to RA and knocking down up-regulated CRABP1 rescued their differentiation potentialFigure 5
Increased Aβ42/Aβ40 ratio reduced responsiveness of SH-SY5Y cells to RA and the knock down of up-regulated 
CRABP1 rescued their differentiation potential. Phase contrast images showing living human neuroblastoma cells (SH-
SY5Y), grown on collagen coated glass cover slips and treated with 1 nM retinoic acid (RA). Differentiation was evaluated by 
the number, shape and length of outgrowing protrusions: (1A) C99I45F (Aβ42/Aβ40↑); (2A) C99V50F (Aβ42/Aβ40↓). Differenti-
ation was evaluated after RA-treatment for 6 days. Both cultures were 50% confluent when RA was added (day zero). C99I45F 
reached 90–100% confluency after 4–6 days without any signs of differentiation, whereas C99V50F did not exceed more than 
60–70% confluency (after 6–10 days) but showed strong differentiation. C99I45F was also evaluated at 60–70% of confluency 
showing no signs of differentiation (data not shown), thus strong confluency of C99I45F (shown here) does not conceal puta-
tive signs of differentiation. (B) C99I45F (Aβ42/Aβ40↑): 30 nM siRNA was administered to the cells for 24 hours in combination 
with a treatment of 1 nM RA for 2.5 days. After 2.5 days, the effects of more than 50% knockdown of CRABP1 (2B) was com-
pared with a nonsense sequence (negative control, (1B)). (C) C99I45F: same conditions as in (B) except that RA was adminis-
tered for 4 days. Differentiation was evaluated after 4 days. Knockdown of CRABP1 (2C) was compared with a nonsense 
sequence (negative control, (1C)). (D) C99I45F: same conditions as in (C), but with another preparation from the same exper-
iment as in (C). (B) and (C) show preparations from different experiments. Experiments were repeated three times with con-
sistent results.
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more than 50%. Therefore, we estimate that a 50% knock-
down of CRABP1 makes cells more sensitive to RA by
approximately a factor of 101-102. The physiological
plasma concentration of RA in humans is approximately
10 nM and 8.4 pmol g-1 in the hippocampi of mice [45].
Excess of exogenous RA may over-saturate the binding
capacities of CRABP1 allowing the remaining RA to bind
to the RARs [46]. This provides an explanation for our
finding that treatment with an excess of RA (>100 nM)
makes no difference in the differentiation behavior detect-
able, but differences are evident at low (physiological)
levels of RA. CRABP1 transfection of AMC-HN-7 cells
results in an increased CYP26-mediated catabolism of RA
[27]. This decreases the RA level accessible to the nuclear
receptors. Indeed, we found CYP26B1 to be up-regulated
in C99I45F, but not in C99V50F. RORB was down-regu-
lated in C99V50F, but not in C99I45F. Furthermore RARB
was not differentially regulated in C99V50F, but up-regu-
lated in C99I45F. These observations might reflect a
response of the cells to an increased RA level in C99V50F
or a decreased RA level in C99I45F, respectively. An
inverse regulation of receptors and their ligands is often
observed [47].

Linkage of the chromosomal locus 15q24 to mental 
retardation
CRABP1 is located on the same chromosomal locus
(15q24) as alpha polypeptide 3, 4 and 5 of the nicotinic
cholinergic receptor (nAChR) and cytochrome P450, fam-
ily 11, subfamily A, polypeptide 1 (cholesterol side chain
cleavage, CYP11A1). Association of nAChR and AD has
been described previously [48]. Moreover, there has been
found to be a linkage of the chromosomal locus 15q24 to
mental retardation [49] and linkage of the flanking
regions (15q22 and 15q26) to AD [50,51]. This linkage
may be explained by the presence of alpha polypeptide 3,
4 and 5 of the nAChR, or of CRABP1, located on the same
chromosomal locus.

Neurofilaments were inversely regulated by C99 and Aβ42, 
Aβ40
We observed down-regulation of the neurofilaments
NEF3, NEFL and INA as a result of C99 overexpression.
Interestingly, these three neurofilaments were up-regu-
lated in response to Aβ42 and Aβ40 overproduction. This
may indicate a role of NEF3, NEFL and INA in the axonal
'clogging' phenomenon [52-55] observed in neurons
induced by APP or its cleavage products [56].

Sensitive balance between proliferation and 
differentiation was influenced by an altered Aβ42/Aβ40 ratio 
via CRABP1
Treating neural stem cells with Aβ increases the total
number of neurons in a dose-dependent manner [57]. In
our study we used neuroblastoma cells, which share

related proliferation and differentiation properties with
neural stem cells. We observed increased proliferation of
human neuroblastoma cells in consequence of an
increased Aβ42/Aβ40 ratio via CRABP1 and suggest that
this influences neurogenesis by promoting proliferation.
However, the newly generated neurons may be prevented
from adopting a functional phenotype, as a consequence
of CRABP1 up-regulation restricting the quantity of RA.
This view is supported by a study showing that RA induces
neurite outgrowth in SH-SY5Y cells [58]. Theoretically, it
seems possible that CRABP1 knock-down would release
the block of terminal differentiation of neurons in AD and
thus improve the differentiation of neural stem cells into
a functional phenotype. RA has often been used to termi-
nally differentiate neuroblastoma cells [59,60] as well as
primary neuroblasts [61]. We observed outgrowing pro-
trusions typical for RA-induced differentiation. Moreover,
we observed that growth stopped or slowed down in a RA
concentration depending manner, which is characteristic
of an effective differentiation process.

Our study focused on an increased Aβ42/Aβ40 ratio, which
is typical for AD. It does not allow us distinguish between
pure Aβ42 and pure Aβ40 effects, because intracellular
processing by γ-secretase typically generates less Aβ40
when more Aβ42 is generated and vice versa. However, we
emphasize that our approach better resembles in vivo con-
ditions than approaches in which Aβ42 or Aβ40 is added
from outside the cells. In our approach C99 is intracellu-
larly cleaved resulting in different Aβ42/Aβ40 levels, which
are released into the extracellular space. This is closer to in
vivo conditions than treating cells artificially with Aβ42 or
Aβ40.

The generation of different Aβ42/Aβ40 ratios is inherently
accompanied by the generation of other C99 cleavage
products like the p3 peptides, the APP intracellular
domains (AICDs) and further cleavage products. The C99
point mutations are expected to equally shift the p340/
p342 and Aβ42/Aβ40 ratios, but little is known about how
these mutations affect the AICD production. Neurons
produce very little p3 from C99, and the AICD sequence
starts at the ε- and not at the γ-site of APP, therefore it
would be expected that the main effect of the mutations
analyzed is due to altered Aβ generation. This, however,
does not exclude the possibility that several C99 cleavage
products work in concert with each other.

In summary, we found that an increased Aβ42/Aβ40 ratio
up-regulated CRABP1, reducing the availability of free RA.
This resulted in an increased tendency towards prolifera-
tion accompanied by a reduced potential to differentiate.
This effect could be rescued by knocking down CRABP1.
We speculate that Aβ42 induces the initial steps in neuro-
genesis by boosting neuronal precursor cell proliferation
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while preventing the terminal differentiation into mature
neurons. This scenario may provide an explanation for
why in AD there is an increase in neurogenesis and at the
same time an increased risk for neurodegeneration.

Conclusion
We conclude that the differentiation potential of the
human neuroblastoma cell line SH-SY5Y is reduced via
CRABP1 up-regulation as a consequence of an increased
Aβ42/Aβ40 ratio.
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