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Abstract
Background: Tumor metastases pose the greatest threat to a patient's survival, and thus, understanding the biology of
disseminated cancer cells is critical for developing effective therapies.

Methods: Microarrays and immunohistochemistry were used to analyze primary breast tumors, regional (lymph node)
metastases, and distant metastases in order to identify biological features associated with distant metastases.

Results: When compared with each other, primary tumors and regional metastases showed statistically indistinguishable
gene expression patterns. Supervised analyses comparing patients with distant metastases versus primary tumors or
regional metastases showed that the distant metastases were distinct and distinguished by the lack of expression of
fibroblast/mesenchymal genes, and by the high expression of a 13-gene profile (that is, the 'vascular endothelial growth
factor (VEGF) profile') that included VEGF, ANGPTL4, ADM and the monocarboxylic acid transporter SLC16A3. At least 8
out of 13 of these genes contained HIF1α binding sites, many are known to be HIF1α-regulated, and expression of the
VEGF profile correlated with HIF1α IHC positivity. The VEGF profile also showed prognostic significance on tests of sets
of patients with breast and lung cancer and glioblastomas, and was an independent predictor of outcomes in primary
breast cancers when tested in models that contained other prognostic gene expression profiles and clinical variables.

Conclusion: These data identify a compact in vivo hypoxia signature that tends to be present in distant metastasis
samples, and which portends a poor outcome in multiple tumor types.

This signature suggests that the response to hypoxia includes the ability to promote new blood and lymphatic vessel 
formation, and that the dual targeting of multiple cell types and pathways will be needed to prevent metastatic spread.
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Background
Metastases are the main cause of mortality for patients
with breast cancer. The molecular biology behind metas-
tasis is complex and likely requires changes in cell cycle
regulation [1], the repertoire of expressed proteases and
protease inhibitors [2], proteins that promote autocrine
growth loops, and/or proteins that cause an epithelial-to-
mesenchymal transition [3]. To make matters more com-
plicated, it is clear that metastasis biology is in part gov-
erned by non-tumor cells including fibroblasts [4],
endothelial cells [5], and myoepithelial cells [6]. For
example, recent evidence suggests that tumor endothelial
cell interactions are important for determining patient
outcomes as evidenced by the promising results from clin-
ical trials that use bevacizumab, a monoclonal antibody
directed against vascular endothelial growth factor
(VEGF) [7,8].

Genomic profiling of human tumors and model systems
has identified important features concerning metastasis
biology. First, it has been shown that the expression pro-
file of primary tumors without metastases can be highly
predictive of the development of future metastases [9-13].
Second, cell lines can be selected that have specific end-
organ tropisms with distinct expression profiles [14,15].
Finally, cell line and murine models have demonstrated
many different genes as being important for breast tumor
metastasis, including Twist [16], Snail [3], and CXCL12
[17]. In this paper, we compare primary breast tumors,
regional metastases, and distant metastases with each
other and show that distant metastasis samples are dis-
tinct and provide unique signatures that predict poor out-
comes in primary tumors.

Methods
Tissue samples and microarray protocols
One hundred and forty-six patients represented by 161
breast tumor specimens (with 23 paired tumor samples)
and 10 normal breast samples (195 total microarrays)
were profiled. Most of these samples appeared in previous
publications [18-20], with 39 being new to this study, and
all of which were collected using institutional review
board-approved protocols. The clinical information for all
samples is in the table in Additional file 1. Included
within the 161 profiled tumors were 134 primary tumors,
nine regional metastases and 18 distant metastases.
Patients were heterogeneously treated in accordance with
the standard of care dictated by their disease stage, estro-
gen receptor (ER) and HER2 status.

Total RNA isolation and microarray protocols are
described in Hu et al [21]. Each sample was assayed versus
a common reference sample [22]. The microarrays used
were Agilent Human oligonucleotide microarrays that
were scanned on an Axon GenePix 4000B, analyzed with

GenePix Pro 4.1, and Lowess normalized. All microarray
data have been deposited into the GEO under the acces-
sion number of GSE3521.

Supervised microarray data analysis
The background-subtracted, Lowess-normalized log2 ratio
of Cy5 over Cy3 intensity values were filtered to select
genes that had a signal intensity of > 30 units in both the
Cy5 and Cy3 channels. Only genes that met these criteria
in at least 70% of the 195 microarrays were included for
subsequent analysis. Next, each patient was classified
according to the following metastasis scoring system
(MetScore): MetScore = 1 were patients that had a primary
tumor and were clinically node negative (N = 0) and dis-
tant metastasis negative (M = 0); MetScore = 2 were
patients that had a regional metastasis (N = 1–3) and no
distant metastasis (M = 0); MetScore = 3 were patients
with confirmed distant disease at the time of diagnosis (M
= 1 and any N) or that were represented by an actual dis-
tant metastasis sample. We next performed a multi-class
significance analysis of microarrays (SAM) using a single
sample from each patient, biasing the sample selection to
use the actual regional or distant metastasis samples (146
arrays, see Additional file 1). We identified the gene set
that was associated with the MetScore 1-2-3 distinction,
which gave 1195 genes at a false discovery rate of 5%. This
gene set was next used in a one-way average linkage hier-
archical cluster using the program 'Cluster' [23], with the
data being displayed relative to the median expression for
each gene using 'Java Treeview' [24].

Cross-validation analyses
Relationships between the gene expression data and the
MetScore classification was further examined using a 10-
fold cross-validation (CV) analysis to identify a set of
genes that might distinguish a MetScore group from the
others. 10-fold CV using five different statistical predictors
including PAM [25], a k-nearest neighbor classifier with
either Euclidean distance or one-minus-Spearman-corre-
lation as the distance function, and a class nearest cen-
troid metric with either Euclidean distance or one-minus-
Spearman-correlation as the distance function, were used
as described in Chung et al [26]. We performed 10-fold
CV using the five different statistical predictors with the
reported CV prediction accuracies being the average of the
five predictors (Tables 1, 2, 3 and 4).

VEGF profile analyses
For the VEGF profile, an average expression value across
all 13 genes (RRAGD, FABP5, UCHL1, GAL, PLOD,
DDIT4, VEGF, ADM, ANGPTL4, NDRG1, NP, SLC16A3
and C14ORF58) was determined and the patients were
placed into a three-group classification based their 13-
gene average log2 expression ratio from the University of
North Carolina (UNC) training data set and using the cut
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off values (-0.63/0.08) that were identified using X-tile
[27] and relapse-free survival as the endpoint. Analyses
using the VEGF profile and the training set cutoffs were
also applied to an independent test set of 295 patients
assayed on Agilent microarrays (that is, NKI295 [28]), to
a set of lung carcinoma samples from Bhattacharjee et al
[29], and to the glioblastoma sample set from Nutt et al
[30]. To perform these across-data set analyses, for the
NKI295 dataset we used the log ratio of red channel inten-
sity versus green channel intensity and the data was
median centered for every gene across the 295 arrays. The
Netherlands Cancer Institute (NKI) dataset was then dis-
tant weight discrimination (DWD) normalized [31] with
the UNC training dataset after collapsing by NCBI Entrez
GeneID; after DWD normalization, the NKI data was also
column standardized. For the Affymetrix datasets the
probe level intensity .CEL files were processed by robust
multi-chip average. The probe sets' log intensity was
median centered for every gene across all the arrays. The

Affymetrix datasets were also DWD normalized relative to
the UNC training data after collapsing by NCBI Entrez
GeneID, and were column standardized.

Multiple expression predictor analyses
First, each sample was assigned an 'intrinsic subtype' as
described in Hu et al [18], where a centroid was created for
each of the following intrinsic subtypes: Basal-like, Lumi-
nal A, Luminal B, HER2-enriched and Normal-like. Next,
we tested for associations between a tumor's intrinsic sub-
type, the VEGF profile and other published expression
profiles implicated in metastasis biology that included a)
the 70-gene outcome predictor developed by van't Veer et
al [10,11], b) the 'wound-response' profile [32], c) the
hypoxia-induced cell line signature [33], d) the 11-gene
BMI/stem cell signature [34], e) a bone metastasis signa-
ture [14], f) a lung metastasis signature [15], and g) the
expression profiles of HIF1α, Snail [3] and Twist [16]; we
extracted as many genes as was possible from our micro-

Table 1: Cox proportional hazards models for relapse-free survival using the NKI 295 patient test data set – model containing the 
clinical variables and the VEGF profile

Variable DF Estimate Standard Error Chi-Square Pr > ChiSq Hazard Ratio 95% Hazard Ratio Confidence 
Limits

Age 1 -0.05508 0.01622 11.5365 0.0007 0.946 0.917 0.977
ER 1 -0.12785 0.23563 0.2944 0.5874 0.88 0.555 1.397
Grade2vs1 1 0.8058 0.31181 6.6784 0.0098 2.238 1.215 4.124
Grade3vs1 1 0.76706 0.32265 5.6519 0.0174 2.153 1.144 4.053
Tsize 1 0.37409 0.19444 3.7017 0.0544 1.454 0.993 2.128
node 1 0.33066 0.17801 3.4504 0.0632 1.392 0.982 1.973
Treatment 1 -0.65688 0.27811 5.5788 0.0182 0.518 0.301 0.894
VEGF_3group 1 0.47238 0.14838 10.1355 0.0015 1.604 1.199 2.145

Table 2: Cox proportional hazards models for relapse-free survival using the NKI 295 patient test data set – model containing the 
clinical variables and multiple gene expression profiles

Variable DF Estimate Standard Error Chi-Square Pr > ChiSq Hazard Ratio 95% Hazard Ratio Confidence 
Limits

Age 1 -0.0505 0.0174 8.4217 0.0037 0.951 0.919 0.984
ER 1 -0.5654 0.34723 2.6514 0.1035 0.568 0.288 1.122
Grade2vs1 1 0.15563 0.33471 0.2162 0.642 1.168 0.606 2.252
Grade3vs1 1 0.02327 0.36156 0.0041 0.9487 1.024 0.504 2.079
Tsize 1 0.53014 0.19935 7.0723 0.0078 1.699 1.15 2.511
node 1 0.15863 0.19203 0.6824 0.4087 1.172 0.804 1.707
Treatment 1 -0.63284 0.29747 4.526 0.0334 0.531 0.296 0.951
VEGF_3group 1 0.47637 0.1597 8.8972 0.0029 1.61 1.177 2.202
GHI 1 0.24924 0.22057 1.2769 0.2585 1.283 0.833 1.977
Gene70 1 0.6283 0.33298 3.5605 0.0592 1.874 0.976 3.6
Wound_Response 1 0.8087 0.35969 5.0549 0.0246 2.245 1.109 4.543
LumA_LumB 1 0.74421 0.36168 4.2339 0.0396 2.105 1.036 4.276
LumA_Basal 1 -0.68615 0.48782 1.9785 0.1596 0.504 0.194 1.31
LumA_Her2- 
enrich

1 -0.16349 0.45232 0.1306 0.7178 0.849 0.35 2.061

LumA_Normal 1 0.51006 0.37635 1.8368 0.1753 1.665 0.796 3.482
ER-regulated 1 0.02629 0.32219 0.0067 0.935 1.027 0.546 1.93
TP53-associated 1 -0.0764 0.31658 0.0582 0.8093 0.926 0.498 1.723
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arrays for each predictor and followed the classification
scheme described by the authors. For the bone metastasis
signature [14], we created an average value for each
patient using the 43 genes that were highly expressed in
the cell line derivatives that metastasized to the bone; we
performed a similar analysis for the lung metastasis signa-
ture [15].

Lastly, for the 11-gene stem cell signature [34], we created
an average value across all 11 genes. We also created a 'gly-
colysis-profile' by starting with the nine glycolysis genes/
probes present on the array, then filtering for probes that
showed > 30 intensity units in both channels, and then
selecting for 70% good data across all samples; next we
selected the subset of glycolysis gene probes that passed
filtering and showed a Pearson correlation of greater than
0.4, which resulted in the selection of six out of nine glyc-
olysis genes (GPI, PKM2, PFKP, PGK1, GAPD, ENO1),
which were then used to create an average profile for each
patient.

We examined correlations between profiles using multi-
ple methods (Additional file 1): for quantized profile test-
ing, Chi-squared analysis and Fischer's exact test were
used. For continuous variable testing, ANOVA analyses
were performed. Finally, we also performed a calculation
of the Cramer's V statistic for the evaluation of the

strength of association between two quantized variables
(see Oh et al [19]).

Survival analyses
Univariate Kaplan-Meier analysis was performed with a
log-rank test using WinSTAT for excel. Multivariate analy-
sis of the NKI295 test set using Cox proportional hazards
modeling was conducted in SAS version 9.1; a Cox hazard
model was tested that included estrogen receptor status
(coded as positive vs. negative), tumor size (coded as ≤ 2
cm vs. > 2 cm), lymph node status (codes as 0, 1–3, > 3
positive nodes or M = 1), age (continuous variable, for-
matted in decades), grade (coded as grade 1 vs. 2, and
grade 1 vs. 3), and treatment (coded as yes if treatment
with chemo and/or hormonal therapy, no if no adjuvant
therapy was given), and the VEGF profile of low, interme-
diate or high as a single categorical variable. Another Cox
model was also tested that included all the clinical varia-
bles, the VEGF profile, and other expression predictors
[11,13,18,19,28,35].

In situ hybridization and immunohistochemistry
In situ hybridization (ISH) on tissue microarrays contain-
ing 250 different human breast tumors (not related to the
146 patients used for microarray analysis) was performed
as previously described [36]. Briefly, digoxigenin (DIG)-
labeled sense and anti-sense RNA probes are generated by

Table 3: Cox proportional hazards models for relapse-free survival using the NKI 295 patient test data set – backwards selected model 
from Table 2B showing the final parameters

Variable DF Estimate Standard Error Chi-Square Pr > ChiSq Hazard Ratio 95% Hazard Ratio Confidence 
Limits

Age 1 -0.05279 0.01751 9.0867 0.0026 0.949 0.917 0.982
Tsize 1 0.50134 0.19171 6.8387 0.0089 1.651 1.134 2.404
Treatment 1 -0.48902 0.19731 6.1425 0.0132 0.613 0.417 0.903
VEGF_3group 1 0.46592 0.14522 10.2939 0.0013 1.593 1.199 2.118
Gene70 1 0.80232 0.27062 8.7898 0.003 2.231 1.312 3.791
Wound_Response 1 0.89085 0.33694 6.9903 0.0082 2.437 1.259 4.717
LumA_LumB 1 0.8682 0.23035 14.2059 0.0002 2.383 1.517 3.742
LumA_Normal 1 0.67587 0.29743 5.1638 0.0231 1.966 1.097 3.521

Table 4: Cox proportional hazards models for relapse-free survival using the NKI 295 patient test data set – model containing the 
clinical variables and the VEGF-profile as a continuous variable

Variable DF Estimate Standard Error Chi-Square Pr > ChiSq Hazard Ratio 95% Hazard Ratio Confidence 
Limits

Age 1 -0.0589 0.01639 12.906 0.0003 0.943 0.913 0.974
ER 1 0.00607 0.25196 0.0006 0.9808 1.006 0.614 1.649
Grade2vs1 1 0.82592 0.31135 7.0367 0.008 2.284 1.241 4.204
Grade3vs1 1 0.78226 0.32128 5.9284 0.0149 2.186 1.165 4.104
Tsize 1 0.31513 0.19566 2.5941 0.1073 1.37 0.934 2.011
node 1 0.3314 0.17655 3.5233 0.0605 1.393 0.985 1.969
Treatment 1 -0.61996 0.27417 5.1133 0.0237 0.538 0.314 0.921
VEGF_Continu
ous

1 0.43301 0.12298 12.3972 0.0004 1.542 1.212 1.962
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PCR amplification of approximately 450 bp products with
the T7 promoter incorporated into the primers; the primer
sequences used for amplification were VEGF (Forward-
tctccctgatcggtgacagt, Reverse-tcgaaaaactgcactagagacaa),
ANGPTL4 (Forward: gggaatcttctggaagacctg, Reverse-
tacacacaacagcaccagca) and ADM (Forward-gtgtttgccaggct-
taagga, Reverse-tcggtgtttccttcttccac). In vitro transcription
was performed with a DIG RNA-labeling kit and T7
polymerase according to the manufacturer's protocol
(Roche Diagnostics, Indianapolis, IN). Immunohisto-
chemistry (IHC) was performed for HIF1α using Mouse
Anti-Human HIF1α (BD Biosciences #610958) according
to the protocol from Vleugel et al [37]; the tumors were
scored for perinecrotic and diffuse staining as described in
Vleugel et al.

Results
Expression patterns associated with metastases
To identify gene expression patterns associated with breast
cancer metastases, we performed 195 microarrays repre-

senting 134 primary tumors, nine regional metastases and
18 distant metastasis specimens (146 different patients
and 10 normal breast tissues). Each patient was classified
according to a MetScore, which is roughly analogous to
stage except that tumor size was not considered (see Meth-
ods). As expected, this scoring system was highly predic-
tive of patient outcomes (Figure 1A and 1B). Using the
MetScore classifications, we performed CV analyses to
determine if any MetScore group might be distinct relative
to the others. Low accuracy rates (56% to 65%) for the
prediction of MetScore 1 vs. MetScore 2 specimens were
observed; however, when MetScore 1 vs. MetScore 3 (80%
to 85%) or MetScore 2 vs. MetScore 3 samples (81% to
83%) were compared, high accuracy rates were obtained,
which suggests that MetScore 3 was the most distinct
group.

Next, we performed a multi-class significance analysis of
microarray [38] analysis using a single sample from each
of the 146 patients and the MetScore 1-2-3 grouping and

Kaplan-Meier survival plotsFigure 1
Kaplan-Meier survival plots. Kaplan-Meier survival plots according to MetScore status (A and B) and according to intrinsic 
subtype (C and D) across the 146 patient UNC training data set.
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obtained a 1195 genes at a 5% false discovery rate. This
gene set was then used in a one-way average linkage hier-
archical clustering analysis (Figure 2 and Additional file 2)
where the samples were first ordered according to Met-
Score, and then according to their correlation to the aver-
age profile (that is, centroid) of the MetScore 3 class. This
analysis demonstrates that some MetScore 1 and 2 sam-
ples actually have a MetScore 3 profile; a similar result has
been shown before by Ramaswamy et al [9].

The gene expression patterns from this SAM analysis were
complex and there were few, if any, that directly correlated
with a simple progression from MetScore 1 to 2 to 3.
Included within this gene set were many clusters and/or
gene sets that have been identified previously, including a

luminal/ER+ pattern [11,39,40] and a proliferation signa-
ture [41,42], both of which are integral parts of a gene
expression assay that predicts the likelihood of recurrence
in ER+ and patients treated with tamoxifen [13]. In addi-
tion, many other biologically important gene sets were
identified, including an 'immediate early' gene cluster
containing c-FOS and JUNB (Figure 2A) [43], a set of
fibroblast genes containing PLAU, THSB2 and multiple
collagen genes (Figure 2B), a set of immune cell genes
(Figure 2D), and a gene set containing CXCL12 (Figure
2C); CXCL12 was the top-ranked gene from this SAM
analysis and was recently identified as a chemokine whose
high expression promotes tumor cell proliferation, migra-
tion and invasion [17]. Analysis of these individual clus-
ters by EASE [44], with both EASE score and Bonferroni <

One-way average linkage hierarchical cluster analysisFigure 2
One-way average linkage hierarchical cluster analysis. One-way average linkage hierarchical cluster analysis of the gene 
set associated with MetScore status. One hundred and ninety-five microarrays, representing 146 tumors and 10 normal breast 
samples were analyzed using the 1195 gene MetScore gene set. Overview of the complete cluster diagram (the full cluster dia-
gram can be found as Additional file 2). The tumors were ordered according to their MetScore, and then according to their 
increasing correlation to the Metscore3 centroid within each group. Clinical regional node status, distant metastasis status, ER, 
PR, and intrinsic subtype are shown. A) FOS-JUN gene expression cluster, B) fibroblast/mesenchymal cell cluster, C) CXCL12 
gene expression cluster, D), immune-cell/HLA cluster, E) VEGF profile.
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Gene Symbols & Names

Luminal/ER

Proliferation

Luminal B Basal-like HER2-enriched

RARRES2 retinoic acid receptor responder tazarotene induced 2

COL6A1 collagen, type VI, alpha 1 

ATF3 activating transcription factor 3 
EGR3 early growth response 
JUNB jun B proto-oncogene 
ZFP36 zinc finger protein 36, C3H type
DUSP1 dual specificity phosphatase 1 
FOS v-fos FBJ murine osteosarcoma viral oncogene
EGR1 early growth response 1 
NR4A1 nuclear receptor subfamily 4
AXUD1 AXIN1 up-regulated 1 
THBD thrombomodulin
NR4A2 nuclear receptor subfamily 4

LOXL1 lysyl oxidase-like 1 
PLAU plasminogen activator, urokinase 
DKFZp564I1922 adlican 
PRSS11 protease, serine, 11 IGF binding 
SFRP2 secreted frizzled-related protein 2 
DACT1 dapper homolog 1
CDH11 cadherin 11, type 2
FBN1 fibrillin 1 Marfan syndrome 
COL6A3 collagen, type VI, alpha 3
CSPG2 chondroitin sulfate proteoglycan 2 versican 
COL12A1 collagen, type XII, alpha 1 
FAP fibroblast activation protein, alpha
COL1A2 collagen, type I, alpha 2 
COL5A2 collagen, type V, alpha 2 
THBS2 thrombospondin 2 
LUM lumican Hs.406475 
CTSK cathepsin K pycnodysostosis

COL6A2 collagen, type VI, alpha 2 
RECK reversion-inducing-cysteine-rich protein with kazal motifs 
DCN decorin 
URB steroid sensitive gene 1 

SERPINF1 serine or cysteine proteinase inhibitor
ADAM12 a disintegrin and metalloproteinase domain 12
AEBP1

FOXO1A forkhead box O1A rhabdomyosarcoma 
KIAA1237 KIAA1237 protein 
DPT dermatopontin
NDN necdin homolog mouse 
FLRT2 fibronectin leucine rich transmembrane protein 2
MFAP4 microfibrillar-associated protein 4
IGF1 insulin-like growth factor 1 somatomedin C 
JAM2 junctional adhesion molecule 2
TGFBR2 transforming growth factor 
SLIT2 slit homolog 2 Drosophila 
TCF4 transcription factor 4 
CXCL12 chemokine C-X-C motif ligand 12 

HLA-DPA1 major histocompatibility complex, class II, DP alpha 1
HLA-DRB3 major histocompatibility complex, class II, DR beta 3 
HLA-DQB1 major histocompatibility complex, class II, DQ beta 1 
HLA-DQB2 major histocompatibility complex, class II, DQ beta 2 
HLA-DPB1 major histocompatibility complex, class II, DP beta 1 
VAV1 vav 1 oncogene 
AIF1 allograft inflammatory factor 1

  S72931 
TRA@ T cell receptor alpha locus 
INPP5D inositol polyphosphate-5-phosphatase, 145kDa
IL10RA interleukin 10 receptor, alpha 
PTPRC protein tyrosine phosphatase, receptor type, C
CD3Z CD3Z antigen, zeta polypeptide TiT3 complex 
CD69 CD69 antigen p60, early T-cell activation antigen 
LTB lymphotoxin beta TNF superfamily, member 3 
LSP1 Lymphcyte-specific protein 1

RRAGD Ras-related GTP binding D 
UCHL1 ubiquitin carboxyl-terminal esterase L1
FABP5 fatty acid binding protein 5 psoriasis-associated 
GAL galanin Hs.278959 BC030241 
PLOD procollagen-lysine, 2-oxoglutarate 5-dioxygenase lysine hydroxylase
DDIT4 DNA-damage-inducible transcript 4
VEGF vascular endothelial growth factor 
ADM adrenomedullin
ANGPTL4 angiopoietin-like 4 
NDRG1 N-myc downstream regulated gene 1 
NP nucleoside phosphorylase
SLC16A3 solute carrier family 16 monocarboxylic acid transporters, member 3 
C14orf58 cromosome 14 ORF58

Unknown

Luminal A Normal-like

Positive Negative
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0.05 used as the cut off, identified many significant gene
ontology categories that included 'transcription regula-
tion' and 'DNA/nucleic acid binding' for the FOS-JUN
cluster, while the fibroblast cluster was over-represented
for 'extracellular matrix', 'cell adhesion and communica-
tion', 'organogenesis', 'development', and 'regulation of
protease activity'. The CXCL12 cluster was over-repre-
sented for 'cell adhesion', 'cell migration' and 'extracellu-
lar matrix'. Lastly, a small 13-gene cluster containing
VEGF, Adrenomedulin (ADM) and Angiopoietin-like 4
(ANGPTL4) was identified as the 'VEGF-profile' (Figure
2E), which is discussed below in greater detail.

Our previous work identified five 'intrinsic' subtypes of
breast cancer that are of prognostic and predictive value
[18,41,45]. Subtype classification of the tumors using the
centroid predictor from Hu et al [18] showed significant
outcome predictions (Figure 1C and 1D). A Chi-squared
test (p = 0.0006) showed that intrinsic subtype was signif-
icantly correlated with MetScore, with the Basal-like and
HER2-enriched groups being the most frequent in Met-
Score 3 and with no Luminal A samples being in the Met-
Score 3 group. Correlations between tumor subtype and
stage have been described [46,47], and were recapitulated
here.

Analysis of the VEGF profile
A small cluster of genes containing VEGF was identified
(Figure 2E) that showed high expression in MetScore 3
tumors. This gene cluster contained several secreted pro-
teins that have been implicated in endothelial cell (VEGF
and ANGPTL4), lymphatic cell (ADM) and smooth mus-
cle cell (GAL) dynamics. As a step in evaluating this pro-
file, we performed ISH to determine what cell type was
producing VEGF, ANGPTL4 and ADM. In the vast major-
ity of cases that showed strong ISH positivity (which
totaled approximately 10% of the 250 tumors tested), it
was the tumor cells themselves that produced the mRNA
for these three genes, and typically all three were produced
(Figure 3). In a few cases, both tumor and fibroblasts
showed ISH positivity, but this was rare.

As a second step in the evaluation of the VEGF profile, we
created an average expression ratio of the 13 genes for
each patient and looked for correlations with outcome. By
dividing the patients into low, intermediate and high-
expression groups using relapse-free survival (RFS) and
cutoffs determined by X-tile [27], we saw that the VEGF
profile was prognostic of RFS (Figure 4A) and overall sur-
vival (data not shown) with the high expression portend-
ing a poor outcome. Rank order expression classifications
(two or three groups) were also robust methods of pre-
dicting outcomes (Additional file 3). Applying the VEGF
profile classification rules to an independent test set of
295 patients (that is, NKI295) [10,28] also significantly

In situ hybridizationFigure 3
In situ hybridization. In Situ hybridization to localize gene 
transcripts using a representative tumor for A) Adrenom-
edulin (ADM), B) Angiopoetin-like 4 (ANGPLT4), and C) 
Vascular Endothelial Growth Factor A (VEGF). Magnification 
200×.
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VEGF
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predicted outcomes (Figure 4B), as did rank order classifi-
cations (Additional file 3). This classification rule was also
of prognostic value on a set of lung carcinoma samples
(Figure 4C and Additional file 3E and 3F), although there
were too few 'low' samples to be included into the Kaplan-
Meier plot analysis, and on a set of patients with glioblas-
toma (Figure 4D and Additional file 3G and 3H); we
noted that two genes (ANGPTL4 and C14ORF58) were
not found on the Affymetrix platform for lung and gliob-
lastoma test data sets. However, the Pearson correlation is
0.992 (UNC training dataset) and 0.986 (NKI295 test
dataset) respectively between the average of the 13 genes
and that of the 11 genes (omitting ANGPTL4 and
C14ORF58). We repeated the survival analysis for the

UNC dataset and NKI test set again using the 11 genes and
the results were very similar (data not shown).

A multivariate Cox proportional hazards analysis on the
NKI295 test set using RFS was performed using clinical
variables and the VEGF profile, and it was determined that
the VEGF profile was a significant predictor of RFS (Table
1). In Fan et al [48], we evaluated the prognostic powers
and concordance across multiple expression predictors
including the intrinsic subtypes, the NKI 70 gene signa-
ture, a microarray-based version of the Genomic Health
Inc. Recurrence Score, and the wound-response profile
using this same NKI patient data set, and we have also
identified other profiles of prognostic significance includ-

Univariate Kaplan-Meier survival plotsFigure 4
Univariate Kaplan-Meier survival plots. Univariate Kaplan-Meier survival plots of survival for patients stratified using the 
VEGF profile on the A) UNC training data set, B) NKI test data set, C) Bhattacharjee et al lung carcinoma data set [29], and 
D) Nutt et al glioblastoma data set [30]. Note: two genes ANGPTL4 and C14ORF58 were not found on Affymetrix platforms for 
C and D.
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ing an estrogen pathway [19] and p53 mutation profiles
[35]; therefore, we performed a Cox proportional hazards
analysis (Table 2) with backwards variable selection
(Table 3) to evaluate a model that contained all of the
aforementioned gene expression predictors and clinical
variables. The final model contained both clinical param-
eters and multiple gene expression predictors including
the VEGF profile (Table 3). Similar results were obtained
when using time to distant metastasis formation, or over-
all survival (data not shown), or when treating the VEGF
profile as a continuous variable (Table 4).

Analysis of a glycolysis-profile and HIF1α expression
A biological implication of the VEGF profile is that it is
related to a tumor's response to hypoxic conditions,

which historically has been referred to as the Warburg
effect [49,50]. A central tenant of the Warburg effect is that
a tumor's metabolism becomes more dependent upon
glycolysis due to anaerobic conditions. To examine glyco-
lysis using a genomic approach, we created a 'glycolysis-
profile' using the six most highly correlated glycolytic
enzyme probes (GPI, PKM2, PFKP, PGK1, GAPD, ENO1,
Figure 5A); the VEGF profile and the six best glycolysis
probes were highly correlated (p < 0.001, Table 5).

HIF1α is a known regulator of VEGF expression, and
therefore we determined that HIF1α mRNA gene expres-
sion was correlated with the VEGF profile (p = 0.0004;
Table 5); in addition, 'perinecrotic' HIF1α IHC staining as
defined by Vleugel et al [37] was also assayed on a subset

Table 5: Correlation analysis of multiple gene expression profiles linked to metastasis biology or formation compared with each other

Quantized Variables Testing

Primary Signature Test Signature Ch-aquare P-value Cramer's V Fisher Exact P-value

VEGF profile MetScore 0.0002 0.272 4.80E-04
VEGF profile NKI 70-gene profile 0.0008 0.3126 3.60E-04
VEGF profile Wound Response Profile 0.0001 0.3524 3.78E-06
VEGF profile Intrinsic Subtype < 0.0001 0.4223 4.29E-11
VEGF profile hypoxia-signature < 0.0001 0.6394 1.10E-15
VEGF profile hypoxia-metagene (50:50) < 0.0001 0.5722 8.29E-12

Intrinsic Subtype MetScore 0.0054 0.2578 7.09E-04
Intrinsic Subtype Hypoxia signature < 0.0001 0.739 1.40E-20
Intrinsic Subtype VEGF profile < 0.0001 0.4223 4.29E-11
Intrinsic Subtype NKI 70-gene profile < 0.0001 0.4449 5.94E-06
Intrinsic Subtype Wound Response Profile < 0.0001 0.7389 1.56E-16
Intrinsic Subtype Hypoxia metagene (50:50) < 0.0001 0.5181 4.91E-09

Continuous Variables Testing

Primary Signature Test Signature ANOVA P-value

VEGF profile BoneMeta 43 Up genes Average < 0.0001
VEGF profile Breast2Lung-Average < 0.0001
VEGF profile Snail1 < 0.0001
VEGF profile Twist1 0.3
VEGF profile 11 stem cell signature-Average 0.0074
VEGF profile 6-Best-Glycolysis-Probes < 0.0001
VEGF profile Fibroblast-line-Avg 0.7
VEGF profile HIF1A 0.0004
VEGF profile hypoxia-metagene (50:50) < 0.0001

Intrinsic Subtype BoneMeta 43 Up genes Average 0.054
Intrinsic Subtype Breast2Lung-Average 0.036
Intrinsic Subtype Snail1 0.0002
Intrinsic Subtype Twist1 0.2
Intrinsic Subtype 11 stem cell signature-Average < 0.0001
Intrinsic Subtype 6-Best-Glycolysis-Probes < 0.0001
Intrinsic Subtype Fibroblast-line-Avg 0.012
Intrinsic Subtype HIF1A 0.0033
Intrinsic Subtype hypoxia-metagene (50:50) < 0.0001
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of 66 of these tumors and was correlated with expression
of the VEGF profile (ANOVA p-value = 0.018, data not
shown), while a 'diffuse' HIF1α IHC profile was not. Next,
the promoter region of each of the genes in the VEGF pro-
file was examined using the program rVISTA [51] and
showed that DDIT4, VEGF, NDRG1, SLC16A3, PLOD,
ADM, ANGPTL4 and C14ORF58 all had hypoxia response
elements within 2000 bp upstream of their start codons;
it is already known that many of these genes including
VEGF [52], ADM [53], and DDIT4 [54] are HIF1α-regu-

lated. Nearly identical genomic results were also obtained
from the NKI295 test set (Figure 5B).

Fibroblast signature
A fibroblast/mesenchymal signature was another profile
that changed with MetScore (Figure 2B), and thus to
examine the potential fibroblast cell content present
within each MetScore group we determined each patient's
average expression value of the genes contained with the
cluster presented in Figure 2B. This gene set contains
fibrillin, fibroblast activation protein alpha, six collagen

VEGF profile, glycolysis and HIF1α gene expression analysesFigure 5
VEGF profile, glycolysis and HIF1α gene expression analyses. A) Gene expression for the VEGF profile (plus average 
values), for the six glycolysis genes and glycolysis centroid, HIF1α and fibroblast centroids are shown across the 146 patient 
UNC training data set with the tumors ordered according to their VEGF profile average values. B) Similar analysis as pre-
sented in A except the data set is the NKI patient test set.
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protein subunits and versican, which are genes and/or
proteins that are typically produced by fibroblast and/or
mesenchymal cells [55]. This analysis shows that the
fibroblast profile is correlated with intrinsic subtype
(Table 5, p = 0.012) and that the MetScore 3 samples had
the lowest average expression compared with the Met-
Score 1 and 2 samples (ANOVA p-value = 0.005, data not
shown). Pathological examination of H&E sections of the
distant metastasis samples also supports this conclusion
and shows scant admixed mesenchymal cells in the dis-
tant metastasis samples versus their primaries that show
abundant admixed mesenchymal cells (Figure 6).

Correlations between multiple metastasis associated 
profiles
We examined whether the intrinsic subtypes, the Met-
Score classification, and the VEGF signature correlated
with any of the following expression profiles that have
been associated with metastatic potential: a) the NKI 70-
gene predictor [10,11], b) the 'wound-response' profile
[32], c) a cell line-derived hypoxia profile [33], d) an 11-
gene BMI/stem cell signature [34], e) a bone metastasis
signature [14], f) a lung metastasis signature [15], g) a
hypoxia metagene [56], and h) the expression profile of
three individual genes (HIF1α, Snail [3], and Twist [16]).
These analyses identified a large amount of concordance
across profiles (Table 5). For example, the breast tumor
subtype was significantly correlated with the bone and
lung profiles, Snail expression, and the 11-gene stem cell
signature; in particular, the bone and lung profiles were
associated with both ER-negative subtypes (Basal-like and
HER2-enriched), and Snail expression and the 11-gene
stem cell signature were the highest within the Basal-like
subtype. Similar results were also observed when the
VEGF profile was compared with the other profiles. Two
'hypoxia signatures' have been described and shown to be
of prognostic value across a variety of tumor types includ-
ing breast [33,56]; the large signature of Chi et al [38]
showed a four-gene overlap with the VEGF profile (ADM,
NDRG1, DDIT4 and ANGPLT4) while the 'hypoxia-meta-
gene' of Winter et al [56] showed a three-gene overlap
(VEGF, NDRG1 and ANGPLT4); as might be expected, all
three of these profiles were correlated (Table 5, p <
0.0001).

Discussion
We took a genomics approach to study metastasis biology
and classified patients with breast cancer according to the
presence and location of their metastases (that is, Met-
Score). The resulting analyses showed that the most dis-
tinct group with the most distinguishing features were the
distant metastases; few differences were seen between pri-
mary tumors and regional metastases, as has been shown
before [57]. When the set of genes that were correlated
with MetScore was determined, many previously known

H&E images of a primary breast tumor taken from a Met-Score 3 patientFigure 6
H&E images of a primary breast tumor taken from a 
MetScore 3 patient. Showing a prominent admixed stro-
mal component comprised of fibroblasts and myofibroblasts 
in the primary tumor. The fibroblast/myofibroblast compo-
nent is markedly diminished in the distant metastatic sites (B 
and C) as compared with the primary tumor (A). Magnifica-
tion 200×.
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Autopsy Patient #1 Lung Metastasis
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gene sets were identified including proliferation [58], ER
status [11,39,40], and fibroblast and/or mesenchymal
genes [55,59]. Notable distant metastasis features
included the low expression of fibroblast genes (and a cor-
responding paucity of fibroblasts as defined by histologi-
cal examination) and the high expression of the VEGF
profile. The VEGF profile represents a in vivo defined gene
expression program that includes a combination of cell-
intrinsic and cell-extrinsic factors. The cell-extrinsic factors
have known roles as inducers of endothelial cell growth
(VEGF and ANGPTL4), inducers of lymphatic vessel
growth (ADM) [60], and smooth muscle cell dynamics
(GAL); thus, the expression of this gene set would appear
to increase the likelihood of tumor survival by causing de
novo vessel formation and providing a dual conduit for
metastatic spread. The cell-intrinsic factors include the
high expression of SLC16A3, whose function is to efflux
the lactic acid out of the cell that occurs during high glyc-
olytic activity, and the expression of NDRG1, which is a
known hypoxia-inducible gene [61,62]. In addition, the
tumors that highly express the VEGF profile also highly
express glycolytic enzymes. In total, our data suggests
poor-outcome distant metastasis samples have the intrin-
sic ability to promote vessel formation, the intrinsic abil-
ity to live under anaerobic conditions, and have lost
dependence upon fibroblasts.

Many genomic profiles for breast tumor metastasis biol-
ogy have been identified, and we therefore compared
them with each other and determined that significant cor-
relations exist. In particular, all metastasis profiles tested
correlated with 'intrinsic subtype'. For example, the Basal-
like subtype showed significant correlation with the 11-
gene stem cell profile, the lung and the bone metastasis
profiles (consistent with these observations, one of the
MetScore 3 Basal-like patients had distant metastases
present in the bone, lung and liver). The Basal-like sub-
type also showed high expression of Snail, and Basal-like
tumors have been shown to have other features of epithe-
lial-mesenchymal transition [63] including vimentin
expression [64].

Conclusion
The VEGF profile showed very significant prognostic value
when using primary tumors, even when tested in models
that contained many other expression predictors and clin-
ical variables. We also believe it possible that the VEGF
profile may have predictive value for angiogenesis inhibi-
tors because it contains VEGF and ANGPTL4, which are
inducers of angiogenesis. How, or if, the VEGF profile is
correlated with response to angiogenesis inhibitors
remains to be determined; however, our profile does sug-
gests that effective anti-angiogenesis therapies for patients
who express this profile may need to extend beyond VEGF

to include the simultaneous targeting of ANGPTL4 and/or
ADM.
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