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Abstract

Regenerative medicine relying on cell and gene therapies is one of the most promising approaches to repair
tissues. Multipotent mesenchymal stem/stromal cells (MSC), a population of progenitors committing into mesoderm
lineages, are progressively demonstrating therapeutic capabilities far beyond their differentiation capacities. The
mechanisms by which MSC exert these actions include the release of biomolecules with anti-inflammatory,
immunomodulating, anti-fibrogenic, and trophic functions. While we expect the spectra of these molecules with a
therapeutic profile to progressively expand, several human pathological conditions have begun to benefit from
these biomolecule-delivering properties. In addition, MSC have also been proposed to vehicle genes capable of
further empowering these functions. This review deals with the therapeutic properties of MSC, focusing on their
ability to secrete naturally produced or gene-induced factors that can be used in the treatment of kidney, lung,
heart, liver, pancreas, nervous system, and skeletal diseases. We specifically focus on the different modalities by
which MSC can exert these functions. We aim to provide an updated understanding of these paracrine
mechanisms as a prerequisite to broadening the therapeutic potential and clinical impact of MSC.
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Introduction
The therapeutic promise of multipotent mesenchymal
stem/stromal cells (MSC), a population of adult stem
cells that can differentiate into cells deriving from meso-
derm lineage, is rising [1–3]. MSC, historically isolated
from bone marrow (BM), emerged in the biomedical
field for their proliferative capacity and the potential to
generate skeletal-related tissues [4]. Research therefore
originally focused on their ability to differentiate into
committed cell types within injured areas. More recently,
evidence suggests that other MSC-related mechanisms,
such as secretion of cytokines or release of microvesicles
(MV), may play a significant role, by promoting the stimu-
lation of endogenous cells, the inhibition of apoptosis, neo-
vascularization, and anti-inflammatory responses [5–7].
Early in vivo evidence suggested that MSC may also induce
tolerance [8]. A large body of in vitro data subsequently
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supported these findings, demonstrating MSC immuno-
suppressive functions on different immune effectors [9].
These findings revealed that MSC retain unique immuno-
logical features, which are paving the way for their clinical
application in the treatment of invalidating or deadly
immune-related disorders [6, 10, 11].
These MSC secretory functions have been progres-

sively enhanced by cell modification within gene therapy
approaches, promoting tissue restoration in a more tar-
geted manner. MSC can be modified to carry therapeutic
genes, serving as programmed molecule transmitters to
overcome limitations connected with direct injection of
beneficial proteins. In particular, these modified MSC
can be used when better bioavailability of the desired
molecule is required.
The emerging role of these mechanisms in specific

contexts can be considered a paradigm changer. A
proper understanding of these novel actions by MSC is
desirable to allow regenerative therapies to gain robust
clinical importance. To date, clinical trials have shown
mild or no adverse effects from MSC treatment [10, 12].
Encouraging results have led to a growing number of
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Table 1 Links to broad spectra of MSC regenerative potential

Organ Wild-type MSC Gene-modified
MSC

Central and
peripheral
nervous systems

Additional file 1:
Link 1.1

Additional file 1:
Link 1.2

Heart Additional file 2:
Link 2.1

Additional file 2:
Link 2.2

Lung Additional file 3:
Link 3.1

Additional file 3:
Link 3.2

Liver Additional file 4:
Link 4.1

Additional file 4:
Link 4.2

Pancreas Additional file 5:
Link 5.1

Additional file 5:
Link 5.2

Kidney Additional file 6:
Link 6.1

Additional file 6:
Link 6.2

Skeletal system Additional file 7:
Link 7.1

Additional file 7:
Link 7.2
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applications that have received tremendous attention,
such as the delivery of therapeutic products to repair
neural injury; the amelioration of cardiovascular events;
the promotion of bone and cartilage regeneration; and
for counteracting liver, pancreas, lung, and kidney disor-
ders. This review dissects these therapeutic applications
of MSC, focusing on their ability to spontaneously or ar-
tificially secrete paracrine factors to counteract still-
challenging human diseases.

The nervous system
Neurodegenerative disorders are attributed to the degen-
eration of specific neural cells with subsequent functional
loss. Cell replacement and gene transfer to diseased or in-
jured brain provide the basis for the development of new
treatment strategies for a broad spectrum of human
neurological conditions, including multiple sclerosis (MS)
[13, 14], amyotrophic lateral sclerosis (ALS) [15, 16],
Parkinson’s disease (PD) [17], Huntington’s disease (HD)
[18], spinal cord injury (SCI) [19, 20], and stroke [21].
Growing evidence suggests that the effects orchestrated by
MSC might only be marginally associated with the gener-
ation of newly graft-derived cells [22, 23], and MSC seem
more likely to be producing neurotrophic and/or immu-
nomodulatory factors to foster tissue repair in vivo
(Table 1; Additional file 1: Link 1.1) [24].
Adipose (AD) or BM-derived MSC reduce the disease se-

verity in a mouse model of MS mainly by influencing the
immune response. These effects are especially reported in
the early stages, where the autoreactive response against
myelin begins to trigger disease development [13, 14]. Simi-
larly, MSC immunosuppression applies to other neuro-
logical models, such as Krabbe disease [25].
Early clinical trials demonstrated the safety and feasi-

bility of MSC for MS [26, 27] and, since then, a growing
number of clinical studies enforced those observations
[28]. Besides the absence of major side effects following
intravenous (i.v.) or intrathecal delivery, few studies also
showed that MSC therapy can improve or stabilize the
course of progressive MS [29]. Structural and functional
improvements in visual function have also been reported
in some patients [30]. Immunological changes compat-
ible with a reduced pro-inflammatory environment have
been described, and are an indirect hint of the possible
MSC-mediated actions in the context of MS [31].
Aside from immunomodulation, the beneficial effect

of MSC may derive from the induction of local neuro-
genesis through the secretion of neural growth factors,
such as basic fibroblast growth factor (bFGF), platelet-
derived growth factor (PDGF), and brain-derived neuro-
trophic factor (BDNF) [13]. These same factors have
been implicated in other experimental settings, such as
improving motor performance in transgenic mouse
models of ALS [15, 16]. An additional mechanism was
reported by Marconi et al., who hypothesized that AD-
MSC derived factors influence astrocytic secretome,
which in turn can amplify the impact of AD-MSC. Thus,
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MSC can trigger a virtuous cycle to protect neurons
from deterioration in the ALS mouse model [15]. In
support of this concept, within a gene therapy context
(Table 1; Additional file 1: Link 1.2), Suzuki et al. forced
glial cell-derived neurotrophic factor (GDNF) expression
in MSC and demonstrated an improvement in motor func-
tion in vivo, along with delayed disease progression and in-
creased life span, in a rat model of familial ALS [32].
MSC-derived neurotrophic factors can also attenuate

dopaminergic dysfunction and neuronal loss in a model of
neurotoxin-induced PD [17], and GDNF-overexpressing
MSC placed into the striatum of a PD rat model suggested
that genetic modification of MSC holds therapeutic poten-
tial for PD [33, 34]. Similarly, Dey et al. demonstrated that
human BM-MSC modified to express BDNF were able to
reduce neuronal degeneration in a mouse model of HD
[35]. MSC were also modified by microRNA encoding se-
quences targeting adenosine kinase (ADK) in a back-
ground of epilepsy, providing evidence that an ADK
knockdown in human MSC reduces acute injury and sei-
zures when injected into mouse hippocampus [36, 37].
Neurotrophic factors may also contribute to the reduction
of infarct volume in cerebral ischemia; vascular endothelial
growth factor (VEGF), epidermal growth factor (EGF),
bFGF, BDNF, and GDNF increase after MSC transplant-
ation in rats [21]. More specifically, an in vivo study [38]
showed that exogenous EGF improved cerebral ischemic
condition by inhibiting free radical generation and/or lipid
peroxidation, preventing neuronal damage. For this rea-
son, EGF and other factors were forced into MSC, with fa-
vorable outcomes in stroke animal models [39–42].
Based on these pre-clinical findings, several clinical tri-

als explored and confirmed the safety of MSC-based ap-
proaches for ischemic strokes, reporting a functional
recovery and a reduction in lesion extension a few weeks
after i.v. infusion [43–45]. The abundance of pre-clinical
data for other neurological conditions, such as PD and
SCI, prompted the employment of MSC in pilot clinical
studies that generated data on the safety and feasibility
of the strategy [46, 47]. Further controlled clinical stud-
ies shall now be required to validate these outcomes and
generate more evidence for a solid therapeutic benefit.
Beside central nervous tissues, MSC can also promote

axonal regrowth in SCI, along with the production of
neutrophil-activating protein-2 and neurotrophin (NT)-3
[20]. Thus, BM-MSC have been modified for NT-3 pro-
duction with partial effects in vivo [48] (Table 1;
Additional file 1: Links 1.1 and 1.2).

The heart
There is extreme clinical interest in novel treatments to
improve heart function, and cellular therapies show
promise [49]. Several types of cell have been so far used
with the aim of generating functional cardiomyocytes
and/or vascular cells in damaged myocardial tissue.
MSC have progressively gained importance within these
approaches [50].
Differentiation of transplanted MSC into cardiomyo-

cytes and vessels was originally proposed as the main
mechanism underlying their therapeutic action in car-
diovascular diseases [51, 52]. More recently, it has been
shown that the number of newly generated cells is too
low to justify functional improvements, and evidence
supports the hypothesis that paracrine mechanisms me-
diated by MSC may play an essential role in the reparation
(Table 1; Additional file 2: Link 2.1) [53]. The mechanisms
mediating these effects by paracrine factors are numerous
and not completely clear, although it has been demon-
strated that they can lead to neovascularization, cytopro-
tection, and endogenous cardiac regeneration (Fig. 1).
More, post-infarction inflammatory and fibrogenic pro-
cesses, cardiac contractility, and cardiac metabolism may
also be influenced in a paracrine fashion [49].
The complexity of MSC secretome is hindering a de-

finitive understanding; however, clues on the biological
drivers for cardiac regeneration have been emerging and
consistent evidence begins to indicate some pivotal
players. VEGF is emerging as a critical paracrine factor
for MSC-mediated cardioprotection. Several MSC types
may also differentially release insulin-like growth factor
(IGF)-1, transforming growth factor (TGF)-β2, and EGF
[54–56]. AD-MSC are able to secrete numerous angio-
genic, arteriogenic, chemotactic, and anti-apoptotic growth
factors; for this reason their secretome has been involved in
a series of novel strategies to enhance tissue restoration by
increased angiogenesis [57–59]. Schenke-Layland et al.
showed that AD-MSC accelerated vascularization in in-
farcted areas, increasing both capillary and arteriole density
as a result of paracrine signaling [60]. This mechanism has
been supported by other investigators who have considered
adult stem cells from other sources administered into ani-
mal models post myocardial infarction (MI) [58, 61, 62].
Other cytoprotective factors such as hepatocyte

growth factor (HGF) and angiopoietin (Ang)-1 are re-
leased by MSC when delivered into an acute MI rat
model, and are associated with a significant improve-
ment in cardiac function through increased angiogenesis
and decreased infarct size [60, 63, 64]. Similarly, Li et al.
showed an increase in capillary density along with sig-
nificantly higher VEGF mRNA and protein levels after
AD-MSC treatment [55].
Starting from these early understandings of MSC para-

crine effects within infarcted regions, several authors se-
lected putative beneficial factors to be introduced in a
gene therapy approach (Table 1; Additional file 2: Link
2.2). A promising strategy to treat MI comes from Gao
et al., who overexpressed VEGF in rat BM-MSC and
generated effective myogenesis, preventing progressive



Fig. 1 MSC paracrine action/mechanisms in heart regeneration. Soluble factors released by MSC play an essential role in the post-ischemic reparative
process improving angiogenesis, cytoprotection, and endogenous cardiac regeneration and reducing fibrosis. Ang-1 angiopoietin 1, HGF hepatocyte
growth factor, MSC mesenchymal stem/stromal cells, VEGF vascular endothelial growth factor
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heart dysfunction [65]. Similarly, murine BM-MSC
modified by VEGF and/or HGF improved ventricular
ejection function and reduced scar size [66]. Others
showed that Ang-1 genetically modified rat BM-MSC
were able to improve heart function by decreasing in-
farct area and promoting heart remodeling [67], indicat-
ing MSC-based gene therapies as feasible tools for heart
regeneration.
Besides pro-angiogenic effects, data have demonstrated

that cellular benefits might also be mediated by the acti-
vation of survival kinase pathways in response to MSC-
secreted cytokines, additionally suggesting prevention of
programmed cell death. Such pathways include activa-
tion of Akt, extracellular signal-regulated kinase 1/2
(ERK1/2), and signal transducer and activator of tran-
scription 3, and inhibition of p38 mitogen-activated pro-
tein kinase, all instrumental in the promotion of cell
proliferation [54]. To support this concept after MI,
Gnecchi et al. genetically modified rat BM-MSC with
Akt, showing that metabolism, glucose uptake, and cyto-
solic pH were maintained, and cardiac metabolism re-
modeling was prevented [68].
Emerging aspects from these pre-clinical findings are

also related to cell homing and tissue persistence. Both
aspects are crucial for clinical outcome in both intra-
vessel and intra-MI injections. Considering rat BM-
MSC, researchers have demonstrated that by overexpres-
sion of C-X-C chemokine receptor type 4 (CXCR4) i.e
the stromal cell-derived factor (SDF)-1 receptor (largely
involved in progenitor homing and survival) was pos-
sible to enhance engraftment within the infarct, thereby
improving function and promoting neo-myoangiogenesis
[69]. On tissue retainment and survival, recent data re-
vealed that overexpression of cytoprotective proteins
capable of enhancing expression of pro-survival genes,
such as heme oxygenase-1, is associated with an increase
in MSC survival [70].
Inflammation is a detrimental factor for tissue regener-

ation after MI. Attention has therefore been paid to anti-
inflammatory approaches based on MSC. A paradigmatic
example comes from the studies of Lee et al., who investi-
gated gene expression of MSC trapped in lungs after i.v.
injection in a mouse model of MI [71]. From all identified
factors, tumor necrosis factor (TNF)-stimulated gene-6, a
known anti-inflammatory molecule, contributed signifi-
cantly to the amelioration of heart function, reducing in-
farct size and improving heart remodeling.
A large number of clinical trials have been completed

for cardiovascular regeneration and their outcomes pub-
lished (for extensive revisions see [10, 72]), with results
suggesting at least the safety of these approaches. How-
ever, emerging data from patients with chronic/acute MI
and refractory angina are still contradictory, showing either
no significant effects or improvements in cardiac function
associated with a reduction of scar tissue [73–76]. There-
fore, basic investigations are currently following these stud-
ies to provide a better understanding of the optimal MSC
source, delivery manner, cell doses, cell persistence, and
precise mechanisms of action to ultimately create a more
favorable prospect for the clinical uses of MSC for cardio-
vascular disorders.

The lung
While less prevalent than cardiovascular diseases, several
lung pathologies represent unmet clinical needs possibly
requiring novel cell based-therapeutic interventions. In-
vestigations into different pulmonary diseases (Table 1;
Additional file 3: Link 3.1) have revealed a basic under-
standing of the possible approaches for treatment that is
yet to be consolidated by further pre-clinical research.
Studies on pulmonary fibrosis demonstrate that i.v. and

endotracheal administration of MSC attenuates lung in-
jury and fibrosis, suggesting a potential clinical application
of MSC for the treatment of lethal idiopathic pulmonary
fibrosis [77–79]. The mechanisms of the MSC-mediated
amelioration in pulmonary fibrosis are not completely
clear and an active participation of MSC through differen-
tiation into alveolar epithelial cells in lung regeneration is
still under debate [77, 78]. An endotoxin-induced lung fi-
brosis model in mice showed an MSC-mediated reduction
in pulmonary fibrosis via paracrine downregulation of pro-
inflammatory responses by reducing TNF-α and macro-
phage inflammatory protein (MIP)-2 while increasing the
anti-inflammatory interleukin (IL)-10 [80]. Additionally,
MSC can also upregulate matrix metalloproteinases
(MMP), favoring the establishment of a microenviron-
ment prone to extracellular matrix degradation and
fibrosis reduction [77].
In a different context, a syngeneic model of pulmonary

emphysema demonstrated that rat MSC reduced apop-
tosis of alveolar epithelial cells through upregulation of
anti-apoptotic B-cell lymphoma (Bcl)-2 gene [81]. More-
over, Akram and colleagues showed that human MSC
displayed site-specific migration into alveolar wounds
where they secreted paracrine components for alveolar
and small airway epithelial wound repair [82]. These
paracrine effectors include fibronectin and lumican,
known to be involved in corneal, skin, and mucosal heal-
ing. In relation to these findings, researchers have add-
itionally gene-modified MSC for lung disorders (Table 1;
Additional file 3: Link 3.2), selectively overexpressing ei-
ther Ang-1 or IL-10. This resulted in a reduction of pro-
inflammatory cytokines, increased lung permeability,
and improved lung injury in vivo [83–85]. Experimental
models of bronchopulmonary dysplasia (BPD) have also
been considered; MSC mitigated lung inflammation, pre-
venting lung vascular damage and alveolar growth im-
pairment, ultimately inhibiting lung fibrosis [86].
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Very curiously, the use of conditioned media from
MSC has been shown to protect alveolar epithelial and
lung microvasculature endothelial cells from oxidative
stress, prevent oxygen-induced alveolar growth impair-
ment, and stimulate endogenous lung progenitors such
as bronchoalveolar stem cells [87]. For this reason, sev-
eral researchers investigated the role of an emerging
class of cell-derived particles, such as MV. Recent evi-
dence suggested that MV can reduce lung inflammation
and protein permeability, which in turn prevented the
formation of pulmonary edema in Escherichia coli
endotoxin-induced acute lung injury [88]. In a mouse
model of hypoxic pulmonary hypertension, MV derived
from mouse MSC-conditioned medium prevented vascular
remodeling and an elevation in right ventricular systolic
pressure by suppressing the hypoxic pulmonary influx of
macrophages and by inducing pro-inflammatory and pro-
proliferative mediators [89]. These data are generating a
novel paradigm of tissue restoration by cell-derived bio-
products that shall require far deeper investigation to
determine the active principle(s) associated with the
biological observations in pre-clinical models and in
humans. To achieve this goal, several clinical pilot studies
are already ongoing for the treatment of BPD, pulmonary
emphysema, and pulmonary fibrosis (data extrapolated
from www.ClinicalTrials.gov).

The liver
The liver has remarkable regenerative capacity in response
to acute injuries. Either hepatic progenitors, the oval cells,
or mature hepatocytes are able to re-enter the cell cycle to
restore the hepatic mass. However, under chronic damage,
these cells lose their ability to regenerate, causing “liver
failure” [90]. For this reason, BM-MSC and human umbil-
ical cord (hUC)-derived MSC-based approaches were in-
troduced in early clinical studies [91, 92] for cirrhosis and
end-stage liver failure, with improvements in liver func-
tion, reduced ascites, and no safety concerns [93–95].
Several studies on animal models reported the benefi-

cial effect of MSC in promoting hepatic regeneration or
preventing pathological changes (Table 1; Additional file
4: Link 4.1). The following mechanisms have been pro-
posed to explain this therapeutic effect: homing and
differentiation into hepatocytes, secretion of trophic
molecules, and suppression of inflammation [96]. The
liver homing properties of MSC were confirmed by the
demonstration that CXCR4 overexpression enhanced
engraftment and improved early liver regeneration [97].
However, reports supporting differentiation of MSC into
hepatocytes are controversial [98, 99], so authors began
to explore the therapeutic potential of MSC, hypothesiz-
ing their ability to produce bioactive factors [100]. These
factors include HGF, VEGF, and nerve growth factor,
which have the intrinsic ability to support hepatocyte
proliferation and thereby facilitate the breakdown of fi-
brosis [96, 100–104]. To test this hypothesis, Ishikawa
et al. genetically increased the expression of HGF in
MSC. They observed that modified MSC accumulated in
the liver, resulting in a decrease in fibrosis in vivo, thus
confirming the homing potential and therapeutic bene-
fits of MSC towards liver fibrosis [105]. Similarly,
others introduced gene therapy approaches as outlined
in Additional file 4: Link 4.2. MMP and fibrinogen-like
protein-1 are also reported to be upregulated, further
indicating the potential of MSC to counteract cirrhosis
[106, 107]. Interestingly, MSC are also likely to exert
an antioxidative action on resident cells by increasing
superoxide dismutase activity and inhibiting reactive
oxygen species production [108].
The anti-fibrogenic action of MSC has also been en-

hanced by gene modification. Li et al. overexpressed hu-
man alpha-1 antitrypsin, demonstrating that gene-
modified MSC engraft into recipient livers and contribute
to liver regeneration without eliciting an immune response
in vivo [109]. This lack of significant immune response re-
calls known immunomodulatory properties of MSC that
may represent a significant step in restoring liver injury.
The local downregulation of pro-inflammatory cytokines
and upregulation of anti-inflammatory cytokines, such
as IL-10, after MSC transplantation has been reported
to significantly improve function and reduce fibrosis
[96, 100, 103, 107, 110].
As for lungs, MSC-derived MV are gaining interest in

pre-clinical models of liver injury. MSC-MV reversed
CCl4-induced injury in mice, through the activation of
proliferative and regenerative responses. These in vivo
beneficial effects confirmed the in vitro findings where
MV sustained higher hepatocyte viability after injuries
caused by acetaminophen and H2O2. The higher survival
rate in vivo in the MV-treated group was also associated
with upregulation of the priming-phase genes (coding
for IL-6, TNF-α, and MIP-2) during liver regeneration,
which subsequently lead to higher expression of prolifera-
tion proteins, such as proliferating cell nuclear antigen
and cyclin D1 [111]. In another recent study, MV derived
from hUC-MSC were used to treat CCl4-induced mouse
liver fibrosis, ameliorating liver injury by inactivating the
TGF-β1/Smad signaling pathway and inhibiting the epi-
thelial–mesenchymal transition of hepatocytes [112].

The pancreas
The replacement of functional pancreatic β cells to-
gether with immunomodulation is seen as an attractive
potential therapy for type 1 diabetes (T1D) [113]. How-
ever, extensive application of islet transplantation is
hampered by the scarcity of donor tissue, the need for
toxic lifelong immunosuppressive drugs, and graft failure
usually within a few years [114, 115]. A possible solution

http://www.clinicaltrials.gov
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to the cited challenges of islet transplantation has been
found in MSC, and early trials based on their administra-
tion in patients with T1D have been reported. Carlsson
et al. showed that autologous MSC treatment of new onset
T1D may be a safe and feasible strategy to intervene in the
disease process to preserve β-cell function. A randomized
and double-blind phase II study is ongoing to validate
these encouraging results [116].
From early studies, MSC immunomodulatory and

paracrine properties, as opposed to the regenerative
properties, are considered to have the greater effect in
preventing, arresting, or reversing autoimmunity and
ameliorating innate/alloimmune graft rejection (Table 1;
Additional file 5: Link 5.1) [113]. At pre-clinical level, inde-
pendent studies have proven that systemic MSC adminis-
tration results in a functional recovery and normoglycemia
[117–120]. However, the relative mechanisms contributed
by MSC to this therapeutic effect are poorly understood.
Reported data showed that MSC could differentiate into
insulin-producing cells in vitro, indicating that trans-
plantation of these islet-like cells is able to ameliorate
hyperglycemia in diabetic rats [113, 121]. However,
MSC differentiation has yielded contradictory results,
mostly due to the discrepancy between the low level of
functional integration of donor MSC and the observed
recovery of pancreatic islets [118]. Therefore, the
outcome of MSC treatment in diabetes is likely to be
achieved by paracrine mechanisms along with immuno-
modulatory properties that can stimulate β cell repair/
regeneration and abrogate immune injury, rather than
by direct differentiation into β cells [113].
Although the potential trophic effect of MSC on pan-

creatic islets is not entirely clear, several MSC-secreted
factors, such as IL-6, VEGF-A, HGF, and TGF-β, seem
to improve islet cell viability and function by inhibiting
apoptosis, inducing β cell proliferation, enhancing β cell
insulin response to high glucose, and promoting islet re-
vascularization [122]. Gao et al. demonstrated that con-
ditioned medium from MSC exerts a striking protective
effect on isolated islets exposed to streptozotocin (STZ).
Moreover, injection of MSC-conditioned media into dia-
betic mice is able to partly restore the numbers of islets
and β cells, and this stem cell paracrine action has been
linked to activation of Akt signaling [123].
Besides these trophic functions, MSC immunomodula-

tory potential has recently gained interest for the treatment
of T1D, mainly as an alternative to immunosuppressive
drugs (Fig. 2). Ezquer et al. observed that, after i.v. adminis-
tration in STZ-induced diabetic mice, MSC engraft into
secondary lymphoid organs, inhibiting self-reacting T-cell
expansion either by inducing regulatory T cells (Tregs) or
by shifting the cytokine profile from a pro-inflammatory to
an anti-inflammatory one [118]. Similarly, following MSC
i.v. injection into NOD mice, others observed an increase
in the percentage of Tregs and a shift towards a Th2 cyto-
kine profile, both of which have been shown to help the re-
covery of islet cells [124].
The recent work by Favaro et al. provides in vitro evi-

dence that some of the immunomodulatory actions of
BM-MSC can be vicariated by MSC-derived MV. The
observed MV inhibitory effect on glutamic acid decarb-
oxylase (GAD)-stimulated peripheral blood mononuclear
cells (PBMC) seems to involve prostaglandin E2 and
TGF-β signaling pathways and IL-10. Blockade of MV
internalization into PBMC, as well as pre-treatment of
MV with RNAse, reduced IL-10 and TGF-β1 transcripts
in MV-treated PBMC stimulated with GAD65. Further-
more, levels of mir-21, known to enhance TGF-β signal-
ing, were increased in GAD-stimulated PBMC in the
presence of MV [125]. To evaluate this hypothesis, a clin-
ical trial with i.v. infusion of hUC-MSC-MV is ongoing to
reduce inflammation and improve the β cell mass in pa-
tients with T1D (www.ClinicalTrials.gov: NCT02138331).
MSC have also been genetically modified to reprogram

them into a pancreatic β cell lineage as well as to serve
as gene delivery vehicles (Table 1; Additional file 5: Link
5.2) [126, 127]. For instance, gene-modified MSC carry-
ing the human insulin gene have been assessed for T1D
therapy [128]. Moreover, gene-modified BM-MSC carry-
ing IL-1 receptor antagonist together with HGF or
VEGF demonstrated clear advantages in improving the
outcome of islet transplantation compared to non-
transduced BM-MSC [129, 130]. Besides the potential
for MSC to ameliorate T1D outcome, MSC have been
evaluated for metabolic control in experimental models
of type 2 diabetes (T2D). Si et al. proved that MSC infu-
sion could partially reconstruct islet function and effect-
ively ameliorate hyperglycemia in T2D rats, additionally
acting to improve insulin sensitivity by upregulating glu-
cose transporter type 4 expression and elevating phos-
phorylated insulin receptor substrate 1 and Akt levels in
target tissues [131]. A preliminary clinical study involv-
ing 22 patients with T2D showed that Wharton’s jelly-
derived MSC are able to significantly improve β-cell
function without adverse effects [132].
MSC have also been evaluated as a cell-based therapeutic

strategy for the treatment of other pancreatic diseases,
such as acute pancreatitis (AP). Jung et al. significantly re-
duced the production of pro-inflammatory cytokines, in-
creasing the production of anti-inflammatory factors by
MSC. Curiously, Tregs were specifically recruited into the
pancreas and along with MSC induced immunomodula-
tion during AP [133].

The kidney
Several studies have reported multiple beneficial effects
of MSC infusion in acute kidney injury (AKI) [134]. Sys-
temically delivered MSC home to kidney after renal

http://www.clinicaltrials.gov/


Fig. 2 MSC immunomodulatory properties in pancreatic regeneration. MSC are able to modulate the autoimmune response in T1D either by
inducing regulatory T cells or by shifting the cytokine profile from a pro-inflammatory to an anti-inflammatory one. APC Antigen Presenting Cell,
CTL Cytotoxic T Lymphocyte, Th1/2 T helper cell type 1/2, Treg regulatory T cell
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injury under the control of several factors, such as SDF-
1 and PDGF [135, 136]. In addition, hyaluronic acid was
shown to recruit exogenous MSC to injured renal tissue,
and enhanced renal regeneration via CD44 [137]. Others
report that MSC infusion is followed by an accelerated
recovery of renal function compared to non-treated
mice. Infused cells were able to partially differentiate
into endothelial or smooth muscle cells and contributed
to angiogenesis, vasculogenesis, and endothelial repair
(Table 1; Additional file 6: Link 6.1) [138]. However, re-
cent data showed that this apparent reparative function
of MSC could also be achieved via intraperitoneal injec-
tions of MSC-conditioned medium alone, suggesting
that MSC may additionally provide paracrine factors
with positive impacts on kidney injury [139]. In contrast
to these findings, others observed that i.v. infusions of
MSC, but not of their conditioned medium, were associ-
ated with both the rapid recovery of kidney function and
the enhanced survival of the mice [140].
Although extensive clinical studies are still limited in

this context, the very interesting results obtained in pre-
clinical steps prompted the translation of MSC-based
treatments into humans. Preliminary results in a phase I
trial using supra-renal aortic injection of allogeneic BM-
MSC showed the safety of allogeneic MSC delivery and
an amelioration of AKI [141]. Another phase II trial
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(NCT 01602328) is ongoing to assess the safety and effi-
cacy of MSC in patients developing AKI. An overall view
of currently available early data confirms the safety of
these treatments. Additional investigations are now re-
quired to identify the precise mechanisms of action and
confirm a benefit in human kidney disorders [142].
While the exact nature of the putative beneficial factors

for the kidney is still under investigation, early evidence
points toward IGF-1, HGF, EGF, VEGF [139, 143, 144] and
bone morphogenetic protein (BMP)-7 as players capable of
restoring kidney function and protecting against fibrosis
[145]. To examine these findings, IGF-1 and erythropoietin
(EPO) production were enhanced in MSC by gene modifi-
cation. MSC co-expressing EPO and IGF-1 improved
hematocrit levels and heart function in a renal failure
mouse model [146]. Similarly, Zhen-Qiang et al. demon-
strated that MSC overexpressing BMP-7 were able to im-
prove renal function and regenerate tubular cells [147].
In a cisplatin-induced mouse model of AKI, Morigi

et al. showed that UC-MSC could stimulate endogenous
target cells to produce regenerative factors, including a
robust HGF expression enhanced by hypoxic conditions
and inflammatory cytokines [148]. Moreover, Tögel et al.
suggested that MSC exert their renal protection through
inhibition of pro-inflammatory cytokines [139]. These
reparative roles of MSC are likely to be multifactorial
and include the provision of cytokines to limit apoptosis,
enhance proliferation, and dampen the inflammatory re-
sponse [145]. This hypothesis has been supported by a
gene therapy approach, in which modified MSC express-
ing tissue kallikrein generated a benefit to tubular injury
thanks to regeneration and anti-inflammatory action
[149]. Additional gene therapy strategies for kidney re-
pair are reported in Additional file 6: Link 6.2. Besides
the mentioned humoral factors, the role of MV secretion
in MSC therapy has recently been outlined (Fig. 3). It
has been demonstrated that MV released from MSC
mimic their beneficial effects for the treatment of a
glycerol-induced model of AKI and ischemia–reperfusion
injury [150, 151]. The same group described that MV de-
livery may retain similar efficacy as human BM-MSC in-
jections. Recent reports began deciphering the molecular
pathways modulated by MSC-MV in the context of renal
regeneration. Specifically, MSC-MV induced the expres-
sion of several anti-apoptotic genes, including Bcl-XL,
Bcl2, and baculoviral IAP repeat containing 8, in renal
tubular epithelial cells while simultaneously downregulat-
ing pro-apoptotic genes such as caspase 1, caspase 8, and
lymphotoxin-alpha [152].
Thus, MSC-MV may confer an anti-apoptotic pheno-

type necessary for tissue repair. In addition, MSC-MV
stimulate renal cell proliferation by inducing the phos-
phorylation and subsequent activation of ERK 1/2, and
blockade of ERK activation with a chemical inhibitor
significantly reduces cell proliferation after MSC-MV
treatment [153]. Although the exact molecules in the MV
that mediate the anti-apoptotic and pro-proliferative ef-
fects have not been identified, these data demonstrate the
ability of MSC-MV to simultaneously modulate several
different pathways to stimulate renal regeneration. To date
and to the best of our knowledge, no clinical study on
microvesicles and AKI has been reported.

The skeletal tissues
Failure of bone repair is often associated with a relevant
morbidity. Therapies using recombinant BMP with or
without biomaterials show promise of becoming a clinic-
ally relevant procedure. However, the lack of optimal
matrices for controlled, sustained BMP delivery, a short
biological half-life of BMP, and the absence of appropri-
ate BMP responsive cells in the fracture environment
limit their usefulness [154]. To overcome these limita-
tions, bone engineering methods using MSC and scaf-
folds provide promising new approaches for bone repair
(Table 1; Additional file 7: Link 7.1) [155]. MSC, as key
progenitor cells for bone regeneration, have been histor-
ically investigated to repair skeletal tissues [156–158]
alone or in combination with osteoinductive factors,
such as BMP-2 [159, 160]. Pre-clinical and clinical inves-
tigations have successfully combined BMP-2 with MSC
as therapy for bone defects [161] and several vectors
have been tested to provide these trophic factors to skel-
eton (Table 1; Additional file 7: Link 7.2). In particular,
BMP were delivered as liposome-mediated plasmid
DNA, adenoviral vectors, and lentiviral vectors [155].
These BMP-2-modified MSC increase alkaline phosphat-
ase activity, mineralization, and cell proliferation, and in-
duce ectopic bone formation, heal critical size bone
defects, and repair fracture triggering spinal fusion
in vivo [162]. In a recent publication, we revealed that
the osteogenic performance of BM-MSC can be empow-
ered by gene modification that introduces Homeobox
protein Hox-B7, which in turn promotes an autocrine
loop of bFGF—a key player in proliferation and osteo-
genic differentiation [163]. Beside a direct differentiation
into bone cells, Otsuru et al. showed that MSC stimulate
bone growth in a model of osteogenesis imperfecta by
secreting soluble mediators, ultimately resulting in
growth-plate chondrocyte proliferation leading to bone
elongation [164].
The historical heritage that MSC retain on bone regener-

ation represents an advantage in their clinical implementa-
tion versus other target tissues. Several clinical studies are
ongoing for non-union bone defects, mandible regener-
ation, osteonecrosis, osteogenesis imperfecta, and vertebral
regeneration [165] (www.ClinicalTrials.gov). While these
challenging trials are still revealing uncertainties for MSC
as a cure for bone defects in humans, they are clearly

http://www.clinicaltrials.gov


Fig. 3 The therapeutic potential of MSC microvesicles in kidney regeneration. MSC MV mediate anti-apoptotic and pro-proliferative effects,
simultaneously reducing oxidative stress to stimulate renal regeneration after acute kidney injury
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indicating a path for the development of MSC-based thera-
peutics on a large scale, with a solid benefit in defined clin-
ical indications [166].
With regards to cartilage, chondrocytes have a limited

regenerative potential [167], most likely because of their
avascularity and a low cellularity. Although current surgi-
cal therapeutic procedures for cartilage repair are clinically
useful, they cannot restore a normal articular surface, in
particular where inflammatory conditions exist. To over-
come these drawbacks, MSC are being considered for
their ability to differentiate into cartilage and act as
immunosuppressive and anti-inflammatory agents in a
variety of cartilage diseases. Among them, Augello et al.
reported that a single intraperitoneal injection of allogen-
eic MSC was sufficient to prevent the occurrence of cartil-
age erosion in immunized mice, suggesting that MSC
might act by inhibiting the activation and proliferation of
tissue-specific autoreactive T cell clones, probably by edu-
cating antigen-specific Tregs [168].
Similarly, joint destruction caused by persistent in-
flammation, such as in rheumatoid arthritis (RA), is a
possible clinical target for cartilage repair using BM-
MSC. A number of studies, based mainly on experimen-
tal animal models, have recently provided interesting
data on the potential of BM-MSC to suppress local in-
flammation and tissue damage in RA [169]. Other stud-
ies ascribe the significant reduction in the severity of
arthritis to the ability of MSC to promote the downreg-
ulation of pro-inflammatory cytokines such as TNF-α,
IL-1, and interferon-γ and the concomitant upregula-
tion of IL-10 [170, 171].
Based on these in vitro and in vivo evidences, MSC

have been introduced in humans for experimental
purposes within trials investigating safety and efficacy
[10, 12, 72, 172]. Outlining the safety of the approach, the
intra-articular delivery of MSC appears promising al-
though still requires additional investigation to definitively
ameliorate the chondrogenic actions of MSC [173–175].
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Current research offers a growing number of bioactive
reagents, including proteins and nucleic acids, that may
be used to augment different aspects of the repair
process. It is difficult to effectively deliver these agents
and gene transfer approaches are being developed to
provide their sustained synthesis at sites of damage by
MSC delivery. The list of potentially useful cDNAs for
cartilage repair comprises members of the TGF-β super-
family, several BMPs, IGF-1, FGF, and EGF. Experimen-
tal data generated so far have shown that genetically
modified MSC allow sustained transgene expression
when transplanted into articular cartilage defects in vivo,
and enhance the structural features of cartilaginous tis-
sue repair [176, 177].

Conclusions
This review highlights that injured organs may benefit
from MSC as regenerative tools able to differentiate ac-
cordingly, secrete useful factors, or both, with the final ef-
fect of counteracting damages. The reported data generally
indicate amelioration, while less frequently clarifications on
mechanism(s) driving the observed therapeutic potential
have been addressed. Technicalities limit current under-
standing; nevertheless, efforts are being made to transfer
knowledge from the laboratory to the clinic and vice versa
to identify the drivers of the observed MSC impacts. Stud-
ies will be implemented on deciphering the ideal MSC tis-
sue source for precise clinical application, as well as on the
best delivery manner to exploit MSC potential through
better cellular retention and optimized recruitment. More
information will be gathered on the still poorly explored
potential of MSC, such as whether MV, previously consid-
ered to be cell debris, may become an important mediator
of intercellular communication. Collectively, this research
will contribute to better characterized MSC that can be se-
lected by physicians based on their patient needs, and on
more precise information on the pivotal properties of MSC
that lead to their enduring benefits.
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