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Abstract

Background: Interventions in infectious diseases can have both direct effects on individuals who receive the
intervention as well as indirect effects in the population. In addition, intervention combinations can have complex
interactions at the population level, which are often difficult to adequately assess with standard study designs and
analytical methods.

Discussion: Herein, we urge the adoption of a new paradigm for the design and interpretation of intervention trials in
infectious diseases, particularly with regard to emerging infectious diseases, one that more accurately reflects the
dynamics of the transmission process. In an increasingly complex world, simulations can explicitly represent transmission
dynamics, which are critical for proper trial design and interpretation. Certain ethical aspects of a trial can also be
quantified using simulations. Further, after a trial has been conducted, simulations can be used to explore the possible
explanations for the observed effects.

Conclusion: Much is to be gained through a multidisciplinary approach that builds collaborations among experts in
infectious disease dynamics, epidemiology, statistical science, economics, simulation methods, and the conduct of
clinical trials.
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Background
Designing intervention trials for infectious diseases
poses many challenges. Firstly, for many infectious dis-
eases, in addition to the direct effects on those receiving
the intervention, interventions can have indirect effects
on individuals not receiving the intervention as well as
on those receiving the intervention. These indirect ef-
fects, sometimes called ‘spillover effects’, may affect the
estimation of the direct effects and are also of public
health significance themselves. Secondly, because trans-
mission is a non-linear and stochastic process, outcomes
in different arms of an intervention trial may be more
variable than expected in a population where each

individual’s outcome is statistically independent of the
outcome of other individuals. Thirdly, heterogeneity from
different sources, such as host susceptibility, pathogen
variability, and exposure heterogeneity, can complicate
study design. Finally, the effects of a combination of inter-
ventions in a trial, such as vaccination and behavioral
intervention, may be difficult to predict at the design
phase. Other factors, including logistical complexities and
ethical considerations, can add to these challenges. Fol-
lowing completion of a trial, interpreting unexpected trial
results can also be difficult.
Recently, investigators have used computer simulation

to assist in the design, analysis, and interpretation of
randomized trials of infectious disease prevention mea-
sures to address these challenges. Herein, we describe
these challenges in more detail and illustrate ways in
which simulation can help to conduct better trials and
to improve the understanding of trial results. We

* Correspondence: betz@fhcrc.org
1Vaccine and Infectious Disease Division, Fred Hutchinson Research Center,
1100 Fairview Ave N, Seattle, WA 98109, USA
2Department of Biostatistics, School of Public Health, University of
Washington, Seattle, WA, USA
Full list of author information is available at the end of the article

© The Author(s). 2017 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Halloran et al. BMC Medicine  (2017) 15:223 
DOI 10.1186/s12916-017-0985-3

http://crossmark.crossref.org/dialog/?doi=10.1186/s12916-017-0985-3&domain=pdf
http://orcid.org/0000-0002-3127-1757
mailto:betz@fhcrc.org
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


conclude by advocating that, for many infectious disease
prevention trials, simulating the trial with the underlying
transmission dynamics is an efficient way to compare
different designs and to identify key aspects critical to its
success, thereby improving the choice of design.

Challenges of designing intervention studies for
infectious diseases and the role of simulations
In the design phase of randomized trials of social or bio-
medical interventions, investigators consider options for
how to conduct the trial and ultimately choose the trial
population(s), the intervention or control conditions that
will occur in each trial arm, the primary and secondary
outcomes to be measured, and the way in which
randomization will occur. For any set of such choices, a
biostatistician working on the study can estimate the
range of likely outcomes that could occur in trials of
various sizes, then estimate the required sample size to
achieve a specified power. This estimate often comes
from closed-form equations that produce accurate sam-
ple size estimates under defined assumptions about the
expected frequency of the outcome in the absence and
presence of the intervention, and the amount of variabil-
ity expected in the outcome within and between the trial
arms. For many applications outside of infectious dis-
eases, plausible assumptions about these quantities can
be directly made based on previous trials, preclinical
studies, or theoretical considerations. In particular, for
non-infectious diseases, disease frequencies in partici-
pants randomized to the control group can be reason-
ably assumed to be similar to those in groups of
individuals not receiving the intervention. Frequencies
in those randomized to the intervention can be assumed
to be the same as those in the control group, reduced by
a factor proportional to coverage and adherence of the
intervention times the efficacy of the intervention. How-
ever, in infectious diseases, these assumptions are often
violated due to the indirect effects of the intervention.

Complications for direct effects
In trials of vaccines and other infectious disease preven-
tion measures, interventions on any given trial partici-
pant may affect the risk of the outcome on others,
regardless of whether or not they are participating in the
trial. For example, recipients of an efficacious vaccine
are less likely to become infected, but may also be less
infectious if they are. Infectious diseases are an example
of dependent happenings, where the frequency of the
outcome depends on the number already affected, which
can be changed by the intervention [1]. Figure 1 illus-
trates some of the different effects that might occur in
infectious disease interventions [2, 3]. Consider two
clusters, or populations, of individuals. In one of the

populations, a certain portion of individuals is vacci-
nated and the rest remain unvaccinated. In the other
population, no one is vaccinated. The direct effect of
vaccination in the population in which some individuals
were vaccinated is defined by comparing the average
outcomes in vaccinated individuals with the average out-
comes in unvaccinated individuals. The indirect effects
are defined as a contrast between the average outcomes
in unvaccinated individuals in the population with vac-
cination and the average outcomes of unvaccinated indi-
viduals in the unvaccinated population. The total effects
are defined by comparing the average outcomes in the
vaccinated individuals in the vaccinated population to
the average outcomes in the unvaccinated individuals in
the unvaccinated population. The overall effects are de-
fined by the contrast in the average outcomes in the en-
tire population where some individuals were vaccinated
compared to the average outcomes of the entire popula-
tion that did not receive vaccination.
In Fig. 1, we have not distinguished trial participants

from non-participants. In the population in which some
individuals were vaccinated (left panel, Fig. 1), some of
the unvaccinated may be in the control arm of the trial
and some may not be in the trial at all. The indirect ef-
fects may reduce the incidence of infection for others
within or outside the trial, invalidating the simple as-
sumption that the incidence prior to the trial will be
similar to the incidence in trial participants who did not
receive the intervention. For complex behavioral

Total = Direct + Indirect

Z=0 Z=0 Z=1 

Direct Indirect
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Fig. 1 Study designs for dependent happenings. Two clusters, or
populations, are considered under two different scenarios. In the
left-hand side scenario, a certain portion of individuals in the cluster
receive vaccination (or other treatment) (Z = 1) and the remaining
portion receive the control intervention (Z = 0). In the right-hand side
scenario, everyone receives the control intervention. Control is defined
as current best practice, placebo, or nothing. The direct, indirect, total,
and overall effects of intervention are defined by the indicated contrasts
(adapted from Halloran and Struchiner [2, 3]). The effects have recently
been given alternative terms in the economics literature [4], where
‘direct effect’ is termed as ‘value of treatment’, ‘indirect effect’ as
‘spillover effect on the non-treated’, ‘overall effect’ as ‘total causal
effect’, and ‘total effect’ as ‘intention-to-treat effect’
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interventions to reduce infectious disease transmission,
such as education programs designed to encourage sex-
ual abstinence to reduce transmission of infections,
those who receive the intervention and change their be-
havior may cause others in the population to do so too
in ways that will also affect the risk infection of trial par-
ticipants. Due to such effects, the mean incidence in
each group may depend, in complicated ways, on the
intervention and trial design, which can be addressed with
simulations.

Measuring effects beyond the individual level
While the indirect effects discussed above can compli-
cate the design and analysis of intervention trials, meas-
uring them may be of scientific interest beyond, or even
instead of, measuring the direct effects of the interven-
tion in protecting individual recipients. Establishing that
vaccination provides population-level effects that go be-
yond the direct effects in the vaccinated can have im-
portant consequences for public health policy. Some
interventions, such as treatment-as-prevention of HIV
and transmission-blocking malaria vaccines, have indir-
ect effects alone. The overall effect of an intervention is
often the quantity of greatest interest for policy-makers
(Fig. 1), as it summarizes the public health consequences
of the choice of intervention strategy if adopted in a
population [2]. Establishing that vaccination produces
indirect effects in the unvaccinated can make a vaccin-
ation strategy more cost-effective. The expected size of
these population-level effects depends not only on the
size of the direct effect, but also on factors related to the
transmission of the disease in the population and the
distribution of the intervention. Thus, additional tools
that account for these interactions may be required in
the design of studies to measure them.
If evaluating population-level effects of interventions,

such as the total, indirect or overall effects, is of interest,
then a cluster-randomized study will generally be the de-
sign of choice [2]. In simple cluster-randomized studies,
the clusters are randomized to intervention or control.
In two-stage randomized studies, clusters are random-
ized to one of several possible levels of coverage, also
called saturation, of the intervention (possibly zero or
pure control), and subsequently individuals within the
clusters are randomized to receive, or not, the interven-
tion with a probability equal to the coverage assigned to
the cluster [4, 5].
Simulations can examine the properties of different

types of cluster-randomized designs, whether parallel
(clusters initially randomized to intervention or control),
stepped wedge (the order in which clusters receive inter-
vention is randomized before the trial) [6], or something
else. For example, the ring vaccination trial of an Ebola
vaccine compared the outcomes in rings of contacts and

contacts of contacts around a detected case and ran-
domized each ring to receive either immediate or de-
layed vaccination [7, 8]. For each type of design,
simulations can answer questions such as ‘what is the re-
quired sample size with this design, given the likely de-
gree of transmission during the trial [9]?’, ‘what is the
optimal choice of cluster size versus number of clusters?’,
or ‘what are optimal coverage (saturation) levels across
clusters [4]?’ Simulations can also compare different
types of designs, clarifying the tradeoffs among these de-
signs in power and bias for estimating various quantities
of interest. Recently, simulations have been used to de-
sign a stepped wedge cluster-randomized study of the ef-
fectiveness of adding solar-powered mosquito trapping
systems to standard malaria interventions, examining
different methods of temporally introducing the inter-
vention across an island [10].
Simulations can also help predict potentially harmful

indirect effects. In an intervention where women are en-
couraged to refuse sexual acts with men, other women
in the population, either study participants or nonpartic-
ipants might be sought out by the men refused by
women in the trial; these are known as spillover effects
[4] or displacement [11]. If displacement occurs, the in-
cidence of HIV may be higher in the women not benefit-
ting from the intervention than it would have been if the
trial had not occurred. In malaria interventions, when
some individuals use bednets, the individuals not using
them may be bitten more often and have increased inci-
dence of malaria. Alternatively, with insecticide-treated
bednets, mosquitoes killed because one participant in
the intervention arm of a trial uses a treated net, may
then fail to bite a person who is in the control arm of
the trial, reducing the risk in the control group, and thus
reducing power. These spillover effects are part of the
dynamic process that can be included in simulations and
can therefore be accounted for in the design phase.

Transmission as a cause of overdispersion
Not only the average risk, but also the variability in risk
among individuals receiving a particular intervention may
be hard to predict in the infectious disease context. Clas-
sical trial sample size calculations rely on simple assump-
tions about variability for independent events, which may
be invalid because they do not account for complex social
and sexual networks. Because of the dynamics of the
transmission process and random events, a group, such as
a village or hospital, within an arm of a trial may have
considerably more or fewer cases than the average value.
The amount of this variability may depend on how the
trial is designed, such as whether individual persons or
groups of persons are randomized to trial arms, and how
the intervention is rolled out over time in the trial. In HIV
prevention trials, one needs to account for stochastic
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variation in the spread of HIV from overlapping sexual
networks and heterogeneity in biological and behavioral
risk factors, in addition to the usual variability in standard
study design [12]. Simulations can take into account dif-
ferent sources of variation as well as include sensitivity
analyses to assess the effects of unknown sources of vari-
ation in calculating sample sizes.

Combinations of interventions
Combinations of interventions in infectious diseases
may have interactions at the population level that are
difficult to predict or to express in simple equations.
When different single interventions or combinations of
interventions are being considered, simulations can be
used to explore possibly synergistic effects on transmis-
sion and outcomes relevant for trial design. Boren et al.
[12] used simulations to estimate the effect size expected
from each of four HIV-prevention interventions if they
were to be implemented individually or in varying com-
binations in a South African population. These effect
size estimates could be the basis for sample size calcula-
tions in a cluster-randomized trial and to evaluate which
interventions to test first. Here, assumptions could be
made about the effect of each intervention on its own
on an individual’s risk of contracting HIV, but simu-
lations are necessary to understand how these inter-
ventions would affect transmission in the overall
population, via indirect effects, as well as to understand
how the effects of the different interventions would
combine at the population level. In addition, the import-
ance of this type of work will increase as partially effect-
ive interventions become adopted as standard of care
and multiple interventions are layered upon each other.
Studies will therefore need to become increasingly larger
to be able to detect significant differences between arms,
increasing the variability and complicating the interpret-
ation and sample size estimates.

Heterogeneities in hosts and pathogens
The above complexities of trial design can be com-
pounded by additional sources of heterogeneity. Individ-
uals may differ dramatically in both their exposure to
infection and their responsiveness to the intervention.
Trial planners may have little advance knowledge about
the distribution of these sources of variability. Addition-
ally, interactions between different pathogen strains can
create further variability in outcome risk, which is dif-
ficult to incorporate into simple equations. For example,
in the case of pneumococcal carriage, nasopharyngeal car-
riage of one strain in an individual inhibits colonization by
another strain. A pneumococcal vaccine protects against
colonization by some but not all strains of the pathogen.
Therefore, if individuals acquire a non-vaccine strain, they
have additional protection against acquiring another

strain, including the vaccine strains. This competition
could potentially make a vaccine seem either more or less
efficacious than it is [13]. Furthermore, epidemics of infec-
tious diseases typically undergo an initial phase of expan-
sion, during which more and more people become
infected, increasing the risk to others, and eventually a
subsequent phase of contraction as previously susceptible
people become infected and immune, decreasing the risk
to others. Thus, the inputs for sample size calculations are
a moving target in infectious diseases, sometimes greatly
varying both temporally and spatially. Occasionally, the
actual quantities that can be measured from the data ob-
served in a trial are non-linear functions of the biological
efficacy of a vaccine or drug [13–15], which may be the
quantity of most direct interest or that considered most
likely to be transportable to populations beyond where the
trial was conducted. Simulations can help capture the im-
pact of heterogeneity in the trial population on power and
on the size of the effect being measured. For example, het-
erogeneity in the exposure or susceptibility to infection of
trial participants can bias vaccine efficacy estimates to-
ward the null. However, simulations showed that, under
certain assumptions, these biases can be avoided by ac-
counting for variation in frailty in the analysis [16]. Simu-
lations considering strain-to-strain interactions have
demonstrated that, even if estimation of heterogeneous
protection of each component against pneumococcal car-
riage fails, unbiased and interpretable estimation of sum-
mary measures of vaccine efficacy may still be possible
from the observed data [17].

Improving trial logistics and ethics
Simulations can help identify key elements beyond the
choice of sample size and outcome measures that deter-
mine the potential for success of a specific trial, includ-
ing speed of case ascertainment, test results, or other
time-sensitive processes that affect the likelihood of suc-
cess. Ethical or logistical reasons may motivate the
choice of design, particularly for trials in the emerging
infectious disease or outbreak settings. The debate over
trials of Ebola vaccines during the 2014–2015 epidemic
in West Africa illustrates that, especially in emergency
situations, these considerations may place competing
pressures on study design [18]. For example, in the
Ebola ring vaccination trial in Guinea, in the face of de-
clining transmission, if cases had not been ascertained
quickly enough and the contacts of the cases and the
contacts of contacts had not been found in a timely
fashion, then the trial likely would not have been feas-
ible. The ring vaccination cluster-randomized trial ul-
timately demonstrated the effectiveness of one Ebola
vaccine [7, 8]. The lesson was learned from the Ebola
experience that intervention trials must be targeted
where the transmission is or where it is expected to be.
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If vaccination had been allocated randomly in the
population, the trial would not have had sufficient
power for a conclusive result. Similarly, simulations are
currently being used to help identify potential sites and
study designs for Zika vaccine trials.
Besides being good scientific practice, designing a trial

with adequate power is also an ethical requirement.
Underpowered studies create a burden on participants
without providing a high degree of assurance that the
scientific results will be valuable [19], while unduly large
studies place a burden on too many participants without
significant extra benefits from the larger sample size.
Further, poorly considered design runs the risk of dis-
carding interventions that might be useful. Simulations
can help find the design that is optimal in terms of ei-
ther power, speed, or number of deaths/cases averted,
and that also fulfills requirements for the respect of hu-
man dignity and other ethical tenets. For example, a
cluster-randomized stepped wedge trial was proposed to
vaccinate frontline healthcare workers with a candidate
Ebola vaccine as quickly as logistically feasible, whilst
randomizing the order in which each treatment unit re-
ceived vaccination to allow randomized evaluation of
vaccine efficacy. However, simulations found that an in-
dividually randomized controlled trial that prioritized
the highest risk treatment units first would have greater
statistical power and speed to a definitive result, avoiding
more total healthcare personnel infections than the pro-
posed stepped wedge design [20]. This kind of work has
a long history in cancer treatment trials [21], but has
been used less in infectious diseases [22, 23]. The ex-
pected value of the information from a trial for decision-
makers relative to its cost can also be easily estimated
using simulation models with an economic component
[24]. In the future, interactions among trial designers,
epidemiologists, infectious disease modelers, and ethi-
cists may help to specify ethical desiderata for trials and
the designs best suited to accomplish these while main-
taining ethical treatment of individuals and study
validity.

Interpreting results of a trial
After a trial, simulations can be helpful in interpreting
puzzling or unexpected trial results. A cluster-
randomized trial was conducted to compare the effect-
iveness of isoniazid preventive therapy given on a
community-wide basis to that of standard of care on tu-
berculosis (TB) in gold miners in South Africa [25]. Al-
though pre-trial mathematical modeling had suggested
that the intervention had unusually high potential for
TB control [26], the intervention trial demonstrated no
effectiveness on TB, attributed to lower than expected
uptake. Post-trial modeling took advantage of data from
the trial and demonstrated that, even with optimal

uptake, a combination of interventions would be re-
quired to greatly reduce TB incidence [27]. Similarly, tri-
als assessing the effect of sexually transmitted disease
treatment on HIV incidence in Rakai, Uganda, and
Mwanza, Tanzania, had differing results, with a larger ef-
fect for the syndromic treatment intervention in
Mwanza than for the mass treatment intervention in
Rakai [28, 29]. Simulation research performed in the
early 2000s suggested that population differences in sex-
ual behavior, curable sexually transmitted disease rates,
and HIV epidemic stage could explain most of the con-
trast [30, 31].
Nevertheless, not all phenomena can be explained with

traditional epidemic models. Simulation studies can help
separate plausible from implausible hypotheses, the
evaluation of which can be incorporated into the design
of later trials and field studies. For example, multiple
randomized controlled trials showed the oral cholera
vaccine to be safe and effective. Yet, detailed spatial ana-
lysis of the results of cholera vaccine trials in Matlab,
Bangladesh, and Kolkata, India, revealed something pe-
culiar, where the strength of indirect effects increased
with coverage faster in unvaccinated than in vaccinated
individuals [32–34] – a result not yet explained by mod-
eling. In this and similar instances, perhaps further bio-
logical understanding will be needed.

Simulation approaches for infectious disease trial
design
An increasingly popular approach to dealing with the
challenges in infectious disease intervention trial design
is to employ computer simulations of the trial in the set-
ting of ongoing disease transmission. As illustrated in
Fig. 2, such simulations translate assumptions about the
effect of an intervention on an individual’s risk, via a
mechanistic dynamic model of the disease transmission
process and the intervention in the trial setting, into
predictions about the magnitude and variability of dis-
ease incidence in each trial arm. These simulations ex-
plicitly model the process of transmission, including
such factors as population and contact network struc-
ture, natural history of disease and infectiousness, the
phase of the epidemic, assumptions about the direct ef-
fects of intervention and, for complex interventions, the
timing and logistics of intervention in the trial.

Simulating a trial
Within this synthetic population, a subset of individuals
is selected as a trial population, and simulations of the
planned trial are then conducted to generate observa-
tions similar to those that could be made in the trial, in-
corporating the stochasticity, or randomness, inherent in
the intervention, the transmission process during the
trial, and the observation process. The randomness is
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generated by figuratively flipping a biased coin in the
computer for every possible event. Each single stochastic
simulation produces data similar to those which might
be observed in one trial. The simulation results can be
stored in a database. From each simulated trial, the ef-
fect measures of interest can be estimated using a pro-
posed method of statistical data analysis. The mean
estimate over the set of simulations under given assump-
tions allows assessment of whether the trial will provide
an unbiased estimate of the quantity of interest, while
variability in the estimates produced over a series of sim-
ulated trials provides a measure of the likely variability.
Sample size and power calculations can be derived dir-
ectly from the variability of output of many simulations.
Alternatively, the intensity and patterns of variability of
disease incidence within the simulated trial can be used
as inputs to conventional formulas to calculate the effect
size that will be detected in the trial and the sample size
required to detect such an effect size given the level of
variability. By changing the assumptions of the simula-
tion, it is possible to explore the sensitivity of the mea-
sured effect size or its variability to particular aspects of
trial implementation, and thereby to design more effi-
cient trials. By analyzing simulation results with different
statistical methods, it is possible to identify potential
biases in the analysis that arise from the transmission
process.

Choice of simulation approach
A key question is what level of detail is required in the
simulation. The level of detail can range from full cali-
bration to a country, such as South Africa [35], to simple
simulations with dynamics but little explicit demo-
graphic structure [12]. Simplicity needs to be balanced
with sufficient detail such that the bias in the results is
minimized. One needs to carefully weigh each additional
complexity and consider whether the choice of interven-
tion and study design is likely to be affected by it. If

comparing analytical approaches alone, then purely stat-
istical models may be sufficient [6]. In many contexts,
however, dynamic mechanistic models are more useful.
In some cases, it may even be important to consider
within-host effects.
Simulations for trial design must choose a contact net-

work structure and critically examine that choice be-
cause it can affect the predicted power and sample size
needed for the trial. Simulations using networks can
examine the effect of within-cluster structure on statis-
tical power and sample size [36]. Similarly, they can be
used to examine the effect of between-cluster mixing,
namely contamination across clusters, on the power of a
study and bias of estimates. Incorporating information
on network features can improve the efficiency of treat-
ment effect estimation in cluster-randomized trials [37].
In general, simulation of trials on contact networks can
aid in understanding the circumstances under which the
structures of these networks matter in trial design and
when they can be ignored. At a finer level of detail,
simulation can help identify network features that are
relevant, in particular, the minimal set of such features
that still yields a gain in power, and how precisely such
features would have to be measured in practice.
The choice of model needs to be matched to the ques-

tion of interest. Stochastic, individual-based models and
deterministic differential equation models can achieve
different objectives related to trial design. Stochastic,
individual-based models have the advantage of generat-
ing data that have statistical variation, and are thus bet-
ter suited to assess different statistical methods of
analysis. Further, they allow greater detail in individual
attributes and may also more accurately reproduce the
population-level effects to be estimated. Differential
equation models generally run much faster and can aid
in studying the effects of different combinations of inter-
ventions on the outcome, allowing the study of point es-
timates of effect measures. However, in general, they do

Fig. 2 Role of simulations for design and analysis of infectious disease intervention trials. Simulations (red) can provide inputs to the usual process
of statistical analysis (purple) by which considerations of trial population, choice of intervention and control intervention, randomization scheme,
estimands and estimators, and sample size lead to a choice of design (blue). The simulations take assumptions about the transmission setting of
the trial, the individual-level effects of the intervention and the trial itself, and an approach to gathering data from the trial, and create a database
of simulated results from many stochastic realizations of the trial. This database contains information on the mean and variability of quantities that
would be estimated in the trial under various conditions, which can then inform the design choices
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not produce synthetic data that can be analyzed using
the proposed statistical methods without an additional
stochastic layer.
Concern about the robustness of results to model mis-

specification is often raised. However, advice that ema-
nates from a model may still be qualitatively correct
even if the model does not accurately characterize all as-
pects of the transmission system. For example, the advice
in tradeoffs for optimal design in estimating different ef-
fects of interventions in two-staged randomized studies
[4] is model assisted and is used to draw analytical insights
that can be valid even if the model is imperfect.
One challenge to using simulations to design and in-

terpret studies is the difficulty in having the appropriate
data to inform all aspects of the simulations, including
empirical epidemiological data about the natural history
and transmission of the disease or treatment effect.
Simulation can assess the impact of uncertainty or lack
of knowledge on potentially important epidemic fea-
tures. An advantage of using simulations after a trial is
that a great deal of additional data will be available to in-
form the modeling. A further challenge to using simula-
tions for trial design is the feasibility of performing such
analyses in a timely manner. Often, prior to proposing a
trial, funding is not available to develop an appropriate
model and conduct simulations for the design. Once
funding is available for a study, it is typically necessary
for the study to commence soon after by making the
best use of conventional sample size calculations. In an
emergency, the models and simulations may be per-
formed quickly. However, going forward, efforts must be
made to integrate funding of and time for simulations
for trial design into the process. In addition to increasing
confidence in the choice of population and sample size,
the process of designing, implementing, and performing
the simulations may provide other benefits, such as
insight into potential biases in effect estimates, ways to
account for heterogeneities in the trial population, calcu-
lations of quantities related to the ethics of trial design,
and suggestions in trial design choices beyond sample
size that may improve the probability of the trial’s suc-
cess. Despite potential caveats, the relative cost of com-
putations versus actually running a trial will be very low,
while the potential gains in avoiding inconclusive studies
are large.

Conclusions
Expertise in infectious disease dynamics, statistical sci-
ence, and simulation methods are required to adequately
design and interpret trials for many interventions against
current and emerging infectious diseases. Trial design
should draw in an expert on infectious disease transmis-
sion dynamics to work alongside a statistician, who is
virtually always employed for study design. Indeed, an

increasing number of investigators have both skillsets.
While simulation experiments cannot replace trials,
most trials would benefit from simulations, or at least
from an exercise to signpost the required steps in such
simulations that may in itself highlight unexpected as-
pects of trial design. When planning a trial, it is advanta-
geous to explicitly annotate a timeline of events for each
case and consider possible variation in the sequence of
these events, similarly to the diagram included in the de-
sign of the Ebola ring vaccination trial [7]. Clear com-
munication of complex simulations, of the assumptions
underlying them, and their limitations is important. In
addition to simulating trials prior to implementation,
there is value in validating modeling approaches follow-
ing the completion of a trial to develop lessons learned
for the simulation of future trials. Over the long term, it
would be useful to combine simulations and practical
experience to develop rules of thumb for adjustment
that can provide guides for smaller studies.
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