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Abstract 

Background  Early identification and management of sight-threatening ocular complications of diabetes using imag-
ing or molecular biomarkers could help prevent vision loss. However, access to specialized infrastructure and exper-
tise is limited, especially in remote areas of the world. Tear-fluid may offer an easier, non-invasive, and localized 
screenshot of ocular disease. To the best of our knowledge, there is no systematic review and meta-analysis on tear-
fluid-based biomarkers for ocular complications in diabetes.

Methods  Articles were extracted from PubMed, Embase, Medline, and Web of Science using the MeSH and Emtree 
terms. The keywords include (diabetes), (diabetic retinopathy), (diabetes mellitus, type 1), (diabetes mellitus, type 
2), (insulin-dependent diabetes), (insulin resistant diabetes), (tears), (lacrimal fluid), (biological marker), and (bio-
marker, marker). Concentrations of tear-fluid biomarkers in individuals with diabetes, diabetic ocular complications, 
and healthy controls were extracted and standardized mean differences (SMDs) and 95% CIs were calculated. Het-
erogeneity was assessed using subgroup and leave-one-out sensitivity analyses. Publication and risk of bias were 
performed using the Egger’s test and Cochrane guidelines. The quality of evidence was evaluated using the Newcas-
tle–Ottawa scale.

Results  Nine hundred eleven papers were identified, 19 of which met the study criteria and were included 
in the meta-analysis. Participants (n = 1413) belonged to three groups: healthy controls (Controls), diabetes with-
out any complications (Diabetes), and diabetes with ocular complications (Complications). Actual concentrations 
were reported for TNF-α, VEGF, IL-1RA, IL-1β, IL-6, IL-8, lactoferrin, lysozyme, and MCP-1 in at least three different stud-
ies. Meta-analyses demonstrated that TNF-α concentration was significantly higher in the tear-fluid of Complications 
group when compared to Controls (SMD = − 1.08, 95% CIs = − 1.78, − 0.38, p = 0.003) or when compared to Diabetes 
(SMD = − 0.78, 95% CIs = − 1.48, − 0.09, p = 0.03). However, it was not different when Controls were compared to Diabe-
tes (SMD = − 1.00, 95% CIs = − 2.27, 0.28, p = 0.13). VEGF demonstrated a similar trend indicating specificity of tear-fluid 
TNF-α and VEGF for diabetic ocular complications.
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Conclusions  Across all biomolecules meta-analyzed in this study, TNF-α and VEGF were identified as the most impor-
tant biomarkers that could potentially offer a non-invasive tear-fluid-based assessment of progression to ocular compli-
cations in diabetes, especially in rural and remote areas where diabetes-related expertise and infrastructure are limited.

Trial registration  PROSPERO (CRD42023441867)

https://​www.​crd.​york.​ac.​uk/​prosp​ero/​displ​ay_​record.​php?​Recor​dID=​441867.

Keywords  Diabetes, Islet, Diabetic ocular complications, Biomarker discovery, Tears, Tear-fluid, Cytokines, Proteins, 
Risk stratification

Background
Diabetes mellitus (DM) is a progressive, complex metabolic 
disorder that affects 529 million individuals globally [1]. 
DM is characterized by hyperglycaemia that results from 
dead/dysfunctional beta cells or insulin resistance [2]. Pro-
longed exposure to high glucose conditions often leads to 
microvascular complications, damaging different organs, 
including the eyes [3]. Ocular diabetic complications such 
as diabetic retinopathy (DR) are currently one of the lead-
ing causes of blindness. Global prevalence of DR is high 
and is estimated to increase to up to 130 million individu-
als in 2030 [4]. Other diabetic ocular complications include 
diabetic corneal neuropathy (DCN), DM with dry eye dis-
ease (DED), and diabetic macular edema, among others [5].

Currently, there are a variety of screening methods 
that are used to diagnose ocular complications includ-
ing imaging techniques and analysis of biomarkers from 
biofluids (serum, plasma, urine, saliva, aqueous and vit-
reous humor, and tears) [6, 7]. Imaging techniques such 
as optical coherence tomography (OCT) and retinal fun-
dus photographs are the gold standard for identifying 
diabetic ocular complications; however, these diagnostic 
methods require high-quality ophthalmic imaging instru-
mentation that are not only difficult to obtain in rural and 
remote areas, but these imaging techniques also demand 
specialized infrastructure and ophthalmologists for grad-
ing the images [8–11]. Tear-fluid offers a high potential 
for biomarker assessment for the diagnosis of ocular 
complications, as these samples can be accessed with 
ease through non-invasive methods such as collection 
via microcapillary tubes, Schirmer’s strips, micropipette 
tips or sponges [12–14]. Currently, new diagnostic tools 
are being developed to assess tear-fluid-based biomol-
ecules using hands-on or point-of-care devices similar 
to a COVID rapid antigen test kit. Additionally, tear-
fluid samples with their close proximity to the affected 
organ offer a more localized complement of biomarkers 
such as cytokines, proteins, and microRNAs (miRNAs) 
[12, 15, 16] that may prove useful in detecting ocular 
complications.

There is currently no systematic review and meta-anal-
ysis that is focussed on tear-fluid-based biomarkers of 

ocular disease in individuals with diabetes. Existing anal-
yses in tear-fluids have either been systematic reviews 
[17–20] or meta-analyses that are focussed on dry eye 
disease (DED [21]), keratoconus [22], or other ocular 
conditions with focus on a specific biomolecule: lacto-
ferrin [23]. These are tabled under Additional File 1: 
Table S1 [17–23]. It is therefore essential to undertake a 
systematic review and meta-analysis of all available tear-
fluid-based biomarkers of diabetic ocular complications.

We aimed to systematically analyze the results of all 
case–control and observational studies that reported the 
concentration of various biomarkers within tear-fluid from 
individuals across the following groups: (1)  healthy con-
trols, (2) those with diabetes but no complications, and (3) 
those with diabetes and associated ocular complications.

Methods
This systematic review and meta-analysis was conducted 
and reported under the Preferred Reporting Items for 
Systematic Reviews and Meta-Analyses (PRISMA) 2020 
guideline and checklist [24]. Details regarding search 
strategy, eligibility criteria, data extraction, and analysis 
of extracted data are outlined in the PROSPERO registra-
tion (ID no. CRD42023441867).

Literature search
PRISMA guidelines were used to systematically search 
PubMed, Embase, Medline, and Web of Science data-
bases and extract data from human studies that measured 
tear-fluid biomarkers in healthy controls or individu-
als with diabetes, with or without ocular complications. 
Articles published between the creation of each database 
and October 21, 2024, were screened. The article search 
was not language restricted. We searched each database 
using the defined keywords and their synonyms in the 
MeSH (Medical Subject Heading) and Emtree terms. The 
keywords include (diabetes), (diabetic retinopathy), (dia-
betes mellitus, type 1), (diabetes mellitus, type 2), (insulin 
dependent diabetes), (insulin resistant diabetes), (tears), 
(lacrimal fluid), (biological marker), and (biomarker, 
marker). The details of search strategies are provided in 

https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=441867
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Additional File 1: Table S2. All papers were screened for 
titles, abstracts, and full-text (Fig. 1).

Inclusion and exclusion criteria
All records from each search were imported into Micro-
soft Excel. Duplicate articles were removed, and the 
remaining articles were manually selected following the 
screening of the title and abstract. Articles were only 
included if they met the PICOS (Participants, Interven-
tion, Comparators, Outcome, Study design) criteria that 
are outlined in Table 1. Following inclusion criteria were 

applied: (i) human studies, (ii) original articles only, (iii) 
full text available, (iv) reporting tear-fluid-based bio-
markers with actual concentrations (in table or figures) 
in at least three different studies, and (v) case–control 
and observational studies with healthy controls and 
individuals with diabetes, and without or with ocular 
complications.

Data extraction
Demographic information of participants and biomarker 
concentrations from the final selected studies were 

Fig. 1  PRISMA flow diagram outlining the selection process that was undertaken for the systematic review and meta-analysis

Table 1  PICOS criteria for inclusion and exclusion of studies

Parameter Inclusion criteria Exclusion criteria

Participants Healthy individuals; individuals with type 1 or type 2 diabetes 
without ocular complications; individuals with diabetes and ocu-
lar complications

Individuals with ocular complications in the absence of diabetes

Interventions No interventions or treatment before sample collection Treatment or any drug intervention at the time of sample collection

Comparators Controls versus Complications; Controls versus Diabetes; Diabetes 
versus Complications

Longitudinal time points (baseline vs endpoint)

Outcomes Biomarkers with actual concentrations reported in tear-fluid Studies not reporting biomarkers and/or concentrations 
for the reported biomarker

Study design Case–control and observational studies Non-original articles (conference abstracts, proceedings papers, 
reviews, systematic reviews, protocols, meta-analyses), drug inter-
ventions



Page 4 of 15Polkamp et al. BMC Medicine           (2025) 23:84 

extracted into a Microsoft Excel worksheet. All values 
were converted to mean ± standard deviation (SD) for 
the concentrations of biomarkers that were presented 
as mean + standard error of mean (SEM), median + 
interquartile range (IQR) or min-max [25]. In one of the 
studies [26], units or SD were confirmed via author cor-
respondence. For 2 of the 19 studies [27, 28], which pre-
sented the data as figures, values were extracted from the 
figures using the free online platform WebPlotDigitizer, 
version 4.8 [29]; after which, mean ± SD were calculated 
in Excel. Although this method [29] is validated for data 
extraction, we confirmed in our hands that the method 
can be reliably used on different types of figures (e.g., bar 
plots, scatter plots, line graphs). Every step of the meta-
analysis (database search, screening, and data extrac-
tion) was performed by a minimum of two researchers 
independently. A very high (> 95%) degree of agreement 
was observed between the independent search strat-
egy among the researchers. In case of any disagreement, 
WKMW and MVJ resolved the conflicts followed by the 
team consensus.

Quality assessment
Newcastle–Ottawa Scale (NOS) [30] was used for quality 
assessment of the studies included in the meta-analysis. 
Additional parameters for data and method transparency 
were included in the questionnaire. Scores of ≤ 6, 7–8, 
and 9–10 were considered as low-, medium-, and high-
quality of evidence, respectively. Additional risk of bias 
was conducted in accordance with the Cochrane assess-
ment for randomized studies [31] and in accordance 
with the ROBINS-I tool for observational studies [32], 
and the outcomes were presented using RevMan version 
5.4. Publication bias was assessed using funnel plots and 
Egger’s test [33]. Effect estimate and standard error were 
used for this analysis using funnel() function in meta 
package in R [34]. Asymmetry of the funnel plots was 
estimated using Egger’s test of the intercept for funnel 
plot asymmetry using metabias() function in meta pack-
age [34]; and the results were validated using another 
function eggers.test() from dmetar package in R [35].

Statistical analysis
RevMan 5.4 software was used to generate forest plots 
for the tear-fluid-based biomarker concentrations that 
were extracted from the 19 included articles. Subgroup 
analyses were also performed in RevMan 5.4. All data 
were entered as mean ± SD. The random-effects analy-
sis model and inverse variance method were selected to 
evaluate the standardized mean differences (SMD) with 
95% confidence intervals (CIs) between the groups. A 
p-value of ≤ 0.05 was considered significant. Heteroge-
neity was presented in each forest plot using different 

values (Tau2, Chi2, I2). We used I2 threshold (> 70%) to 
indicate the high level of heterogeneity as per Cochrane 
guidelines. The leave-one-out sensitivity analysis was 
performed as described by Harrer et al. [36]. The results 
were visualized as forest plots using the “Data” element 
of the “InfluenceAnalysis” R object generated by the 
“dmetar::InfluenceAnalysis()” function.

Results
Characteristics of studies included in the meta‑analysis
Figure 1 illustrates the PRISMA workflow used to select 
the articles that are included in this meta-analysis. The 
initial search in PubMed, Embase, Medline, and Web of 
Science identified 911 articles after excluding 487 dupli-
cates. During title and abstract screening, 689 articles 
were excluded. The remaining 222 articles were full-text 
screened, and a final total of 19 articles containing con-
centrations for commonly reported biomarkers were 
included in the meta-analysis (Table  2 [26–28, 37–52]). 
All biomarkers were measured in tear-fluid samples, 
which were collected via methods such as Schirmer 
test/strips or glass microcapillaries/pipettes/tubes. All 
included articles reported concentrations of the selected 
biomarkers for two or three groups: (healthy con-
trols (Controls), participants with diabetes (Diabetes), 
and participants with ocular complications of diabetes 
(Complications)).

Table  2 summarizes the characteristics of the 19 arti-
cles selected for meta-analysis, including data from a 
total of 1413 participants (430 Controls, 273 Diabetes, 
710 Complications). During full-text search, we noted 
several molecules that were measured in the tears (Addi-
tional File 1: Table  S3); however nine analytes: tumor 
necrosis factor-alpha (TNF-α), vascular endothelial 
growth factor (VEGF), interleukin-1 receptor agonist 
(IL-1RA), interleukin-1 beta (IL-1β), interleukin-6 (IL-6), 
interleukin-8 (IL-8), lactoferrin, lysozyme, and monocyte 
chemoattractant protein-1 (MCP-1) were reported in 
three or more papers and were included in meta-analy-
sis. The studies were performed in various countries and 
ethnic groups. Thirteen studies were performed in Asian 
regions [28, 37, 38, 40–46, 48, 50, 51], and 5 studies were 
in European regions [26, 27, 39, 47, 49]. One study was 
conducted in North America [52].

Comparison of biomarker concentrations 
between participant groups
Concentrations of TNF-α, VEGF, IL-1RA, IL-1β, IL-6, 
and IL-8 were available for comparison in all three 
groups, i.e., Controls, Diabetes, and Complications 
groups.

TNF-α, VEGF, and IL-6 were significantly elevated in 
the Complications group as opposed to Controls: TNF-α 
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(SMD = − 1.08; 95% CI = − 1.78, − 0.38; p = 0.003), VEGF 
(SMD = − 1.44; 95% CI = − 2.56, − 0.32; p = 0.01), and 
IL-6 (SMD = − 0.56; 95% CI = − 0.87, − 0.24; p = 0.0006) 
(Fig. 2). Other three analytes were not statistically differ-
ent between these two groups. Interestingly, lactoferrin 
and lysozyme were higher and overall significant in Con-
trols than in Complications participants (Additional File 
1: Figure S1).

IL-6 and IL-8 concentrations were significantly higher 
in the Diabetes group as compared to Controls, while 
TNF-α, VEGF, IL-1RA, and IL-1β did not show any sta-
tistically significant difference (Fig. 3). MCP-1 expression 
in tears was similar for these two groups (Additional File 
1: Figure S2).

TNF-α, IL-6 and VEGF indicated significantly higher 
concentrations in the Complications group compared to 
the Diabetes group (Fig. 4).

Heterogeneity analysis of the included studies
Analyses of the majority of these molecules in different 
comparisons demonstrated high heterogeneity (I2 > 70%) 
for individual as well as for overall analyses (Figs.  2, 3 
and  4). Interestingly, we did not find any specific study 
introducing heterogeneity, with marginal to modest 
changes observed in the I2 statistics after leave-one-out 
sensitivity analysis (Additional File 1: Figure S3-S5). Some 
articles demonstrated reduction in I2; however, no single 
study was observed to introduce heterogeneity across all 
comparisons and all molecules.

Subgroup analyses were undertaken to understand the 
contribution of potential factors (methods of tear collec-
tion, methods of biomarker analysis, ethnicities, and use 
of data derivation techniques) to heterogeneity in results. 
As there were not enough papers after segregating them 
for data extraction method (WebPlotDigitizer derived 
graphical data vs directly reported tabular data) or eth-
nicities or for biomarker measurement method (majority 
ELISAs), we could not report the subgroup differences 
and the heterogeneity thereof. The method of capillary-
based tear collection was observed to reduce the I2 values 
than those with Schirmer paper collection (Additional 
File 1: Figure S6).

New technologies for biomarker measurement
During the full-text screening, we identified studies that 
aimed at developing new technologies for the effective 
measurement of tear-fluid biomarkers. In addition to 
the meta-analysis of biomarkers (Figs. 2, 3 and 4, Addi-
tional File 1: Table  S3), our systematic review identified 
13 studies that developed and validated methods such as 
biochips and immuno-sensing platforms for biomarker 
analysis from tear-fluid samples. A list of these method-
ologies for the identification of targeted biomarkers of 

diabetic ocular complications is presented in Table 3 [37, 
53–64]. These techniques could be translated for generat-
ing hands-on diagnostic sensors in the future.

Quality of evidence assessment
Every study included in the meta-analysis was assessed 
using Newcastle–Ottawa scale (NOS; Additional File 1: 
Table S4). In addition to the selection, comparability, and 
exposure questionnaire, we also analyzed transparency in 
reporting data and methodological details for each study. 
The majority of the studies (11 out of 19) had medium to 
high quality of evidence (scores of 7–9). Details of case 
selection, age-sex matching of case-controls, and trans-
parency in data and method were reported in most of 
the studies (Additional File 1: Table S4). The risk of bias 
assessment for the 19 studies suggested low risk for 
study design for the majority of the studies (not shown). 
However, significant publication bias was observed after 
assessment using funnel plot (Additional File 1: Figure 
S7-S9) and Egger’s test (p < 0.05).

Discussion
The present systematic review and meta-analysis aimed 
to identify and analyze tear-fluid-based diabetic ocular 
complication biomarkers that are currently reported in 
the literature. The 19 studies encompassing 1413 par-
ticipants (from three continents) across 3 groups, indi-
cated that concentrations of TNF-α, VEGF, IL-6, and IL-8 
increased in individuals with ocular complications of dia-
betes (Figs. 2 and 4), with TNF-α, IL-6 and VEGF dem-
onstrating consistent and statistically significant elevated 
concentrations in the tear-fluid of Complications group 
as compared to the Control or Diabetes groups. Com-
parison of TNF-α  and  VEGF  concentrations between 
the Controls and Diabetes groups did not yield any sta-
tistical significance (Fig. 3), indicating their specificity in 
tear-fluid to diabetic ocular complications. Lactoferrin, 
lysozyme, and IL-1RA were lower in the Complications 
group; however, only lactoferrin demonstrated signifi-
cance between the comparisons (Fig. 2, Additional File 1: 
Figure S1).

The biomarkers highlighted in this meta-analysis are 
a combination of proteins and cytokines. Increased 
concentration of VEGF in the retina is one of the most 
established biomarkers for ocular complications such as 
DR, where increased VEGF results in neovascularisation 
[65]. We also observed a higher concentration of VEGF 
in tear-fluid from individuals in Complications groups. 
The majority of the remaining biomarkers are cytokines; 
IL-6 is a pro-inflammatory cytokine that is produced 
in response to an infection or tissue damage [66] and is 
often associated with chronic injury, more specifically, 
ocular damage [67]. IL-8 is also known to be involved in 
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Fig. 2  Biomarker concentrations reported from each study compared between Control group and Complications group. Data represented 
as standardized mean difference (SMD) have been divided into two groups: one with healthy control participants and the other of individuals 
with clinical signs of diabetes and ocular complications. Both groups show concentrations for TNF-α, VEGF, IL-1RA, IL-1β, IL-6, and IL-8. Studies 
that present the concentrations of these markers for NPDR as well as PDR are listed separately. IV inverse variance, CI confidence interval, NPDR 
non-proliferative diabetic retinopathy, PDR proliferative diabetic retinopathy. Asterisk indicates study data was extracted using WebPlotDigitzer
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ocular inflammation [68]. IL-1β, another pro-inflamma-
tory cytokine, is secreted in response to injury or damage 
to mediate inflammation as a host-defense mechanism 
[69]. Increased concentration of IL-1β in the tear-fluid 
has been observed in dry eye disease [70]. IL-1RA is 
known to block the binding of IL-1β to IL-1 receptor 1 

(IL-1R1), thus is important in controlling IL-1β activity 
[71]. TNF-α is also one of the common biomarkers iden-
tified in this meta-analysis and is often associated with 
chronic inflammation as well as insulin resistance [27]. 
MCP-1 (CCL2) is a potent inflammatory cytokine, and 
it has been shown to be involved in retinal inflammation 

Fig. 3  Biomarker concentrations reported from each study compared between the Control group and the Diabetes group. Data represented 
as standardized mean difference (SMD) have been divided into two groups: one with healthy control participants, and the other showing clinical 
signs of diabetes with no noted ocular complications. Both groups show concentrations for TNF-α, VEGF, IL-1RA, IL-1β, IL-6, and IL-8. IV inverse 
variance, CI confidence interval, Asterisk indicates study data was extracted using WebPlotDigitzer
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in diabetes via monocyte and macrophage recruitment 
and activation [72]. In addition, MCP-1 along with 
other inflammatory markers (VEGF, TNF-α, IL-1β, and 
IL-6) was observed to be elevated in the aqueous humor 
and vitreous fluid of individuals with PDR and diabetic 

macular edema [72]. Lactoferrin is another potential 
molecule that has been studied in diabetic ocular compli-
cations. There is a meta-analysis on lactoferrin in DR and 
other ocular complications [23], suggesting lower con-
centrations in dry eye disease. Our findings corroborate 

Fig. 4  Biomarker concentrations reported from each study compared between the Diabetes group and the Complications group. Data represented 
as standardized mean difference (SMD) have been divided into two groups: one with diabetes participants without ocular complications, 
and the other showing clinical signs of diabetes and ocular complications. Both groups show concentrations for TNF-α, VEGF, IL-1RA, IL-1β, IL-6, 
and IL-8. Studies that present the concentrations of these markers for NPDR as well as PDR are listed separately. IV inverse variance, CI confidence 
interval, NPDR non-proliferative diabetic retinopathy, PDR proliferative diabetic retinopathy. Asterisk indicates study data was extracted using 
WebPlotDigitzer
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with these data, wherein we also observe significantly 
lower lactoferrin in diabetic ocular complications. 
Lysozyme is an antimicrobial protein (AMP), highly 
abundant in tears and is implicated in mucosal immunity 
[73]. The presence of these biomarkers in the tear-fluid 
is consistent with their function and profiles, indicative 
of tissue damage in diabetic ocular complications [74]. 
Exact origin and route of these molecules into tear-fluid 
is unknown. A logical derivation is that the localized 
milieu of increased pro-inflammatory cytokines and vas-
cular growth factors during progression to ocular com-
plications contributes to leakage or targeted release (via 
exosomes/extracellular vesicles) of these biomolecules 
into the tear-fluid.

At the full-text screening stage, we identified a pleth-
ora of other potential biomarkers that were profiled in 
the tear samples of diabetic ocular complications (Addi-
tional File 1: Table S3). These markers were not included 
for analysis as they did not meet our pre-defined inclu-
sion criteria (actual concentrations reported in at least 
three studies) but they may hold promise as potential 
diagnostic tools. LCN-1 is the third most abundant pro-
tein in tear-fluid that is primarily responsible for binding 
to lipids and cholesterol [75]. In DR, concentrations of 
LCN-1 have been reported to be elevated, compared to 
healthy individuals [76]. Although LCN-1 was measured 
in more than three studies, we could not include it in the 
meta-analysis due to insufficient data.

The two most commonly reported classes of biomark-
ers were proteins and cytokines, while other biomarker 
types included metabolites and amino acids, peptides, 
enzymes, trace metals, glucose, as well as microRNAs/
miRNAs (Additional File 1: Table S3). MiRNAs are small 
non-coding RNAs that regulate gene expression and are 
emerging as biomarkers for different diseases [77–81]. 
Our systematic screening identified three studies report-
ing miRNAs as potential biomarkers for diabetic ocu-
lar complication [82–84]; however, they were ineligible 
for data extraction and meta-analysis due to the lack of 
actual concentration/expression data.

The limitations of this study are the inadequate num-
ber of articles reporting actual concentrations of tear-
fluid-based biomarkers for subgroup analyses. The 
majority of the biomarkers (Additional File 1: Table S3) 
identified in our search were reported in one or two 
studies, which severely limited the number of papers 
that were finally included in this meta-analysis. Another 
limitation was the high heterogeneity in this meta-
analysis. The tear-fluid collection methods, and protein 
quantification methods (ELISA, LC–MS, and bead-
based assays) are noted to produce different sensitivity 

and specificity values across different reports [85, 86]. In 
our study, subgroup analysis for tear collection methods 
(capillary vs Schrimer paper) indicated differences in the 
I2 values for some of the markers, suggesting tear collec-
tion method can introduce heterogeneity in the results. 
Studies from different regions of the world may produce 
context/ethnicity-based bias. Analysis to understand the 
contribution of different factors towards heterogeneity 
was not possible due to fewer number of publications 
in each subgroup. Future studies with larger and more 
diverse cohort of study participants, along with opti-
mized sample collection methods are needed. While DR 
can be further classified into non-proliferative (NPDR) 
and proliferative (PDR) stages, a limited number of 
studies prevented us to perform a sub-analysis of bio-
markers to differentiate between these stages. Underly-
ing confounding factors such as other systemic diseases, 
ocular or systemic inflammation could lead to the pres-
ence of inflammatory markers in the tears. However, we 
find that the majority of the studies (14 of 19) have strict 
exclusion criteria where participants with existing active 
or chronic eye infections, ocular allergies, inflammatory 
diseases of the eye surface, history of eye surgeries, and 
systemic inflammation were excluded. Additionally, the 
majority of the cases and controls in this meta-analysis 
were matched for age and sex, and several studies were 
also matched for co-morbidities, smoking, and diabetes 
duration.

Despite these limitations, this meta-analysis is the 
first to comprehensively evaluate the effectiveness of 
tear-fluid-based proteins and cytokines in the diagno-
sis of ocular complications in diabetes. Through group-
wise comparison of study participants from 19 studies, 
we identified that the tear-fluid concentration of TNF-α 
and VEGF are significantly different in individuals with 
ocular complications of diabetes. However, as the het-
erogeneity (I2) values were high, future validation on 
larger cohorts as well as mechanistic understanding 
of their increased concentration in tear-fluid will be 
insightful. Additionally, we report newer methodolo-
gies that are being developed to assess tear-fluid-based 
biomarkers (Table  3). Although we did not find any 
longitudinal cohort study exploring tear biomarkers 
of diabetic ocular complications, our work provides a 
framework for undertaking prospective clinical studies 
to assess the biomarkers found to be significantly dys-
regulated in this meta-analysis. Tear-fluid provides a 
non-invasive material for longitudinal biomarker profil-
ing, and therefore, it is important to develop an easy-
to-use, portable, and economical platform that captures 
changes in the levels of such biomarkers.



Page 13 of 15Polkamp et al. BMC Medicine           (2025) 23:84 	

Conclusions
This is the first meta-analysis identifying a set of tear-
fluid-based biomarkers across individuals without 
(Control), with diabetes, and those with ocular compli-
cations of diabetes. This meta-analysis demonstrated 
that while there are several studies on tear-fluid-based 
biomarkers, only a few of these measure the same bio-
markers using standardized assays. Here we show that 
TNF-α and VEGF independently or together with other 
biomarkers have the potential to stratify individu-
als with ocular complications of diabetes compared to 
those without any ocular complications (Diabetes only) 
or those without diabetes (Controls). Future studies 
could focus on determining the predictive power of 
these biomarkers and the deployment of point-of-care 
technologies to facilitate longitudinal and cost-effective 
assessment of ocular health for risk stratification of 
those in our remote/rural communities.
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