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Abstract 

Background  This study aimed to construct a radiomics-based imaging biomarker for the non-invasive identification 
of transformed follicular lymphoma (t-FL) using PET/CT images.

Methods  A total of 784 follicular lymphoma (FL), diffuse large B-cell lymphoma, and t-FL patients from 5 independ-
ent medical centers were included. The unsupervised EMFusion method was applied to fuse PET and CT images. 
Deep-based radiomic features were extracted from the fusion images using a deep learning model (ResNet18). These 
features, along with handcrafted radiomics, were utilized to construct a radiomic signature (R-signature) using auto-
matic machine learning in the training and internal validation cohort. The R-signature was then tested for its predic-
tive ability in the t-FL test cohort. Subsequently, this R-signature was combined with clinical parameters and SUVmax 
to develop a t-FL scoring system.

Results  The R-signature demonstrated high accuracy, with mean AUC values as 0.994 in the training cohort 
and 0.976 in the internal validation cohort. In the t-FL test cohort, the R-signature achieved an AUC of 0.749, 
with an accuracy of 75.2%, sensitivity of 68.0%, and specificity of 77.5%. Furthermore, the t-FL scoring system, incorpo-
rating the R-signature along with clinical parameters (age, LDH, and ECOG PS) and SUVmax, achieved an AUC of 0.820, 
facilitating the stratification of patients into low, medium, and high transformation risk groups.

Conclusions  This study offers a promising approach for identifying t-FL non-invasively by radiomics analysis on PET/
CT images. The developed t-FL scoring system provides a valuable tool for clinical decision-making, potentially 
improving patient management and outcomes.
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Background
Follicular lymphoma (FL) is the most common form of 
indolent lymphoma originating from germinal center B 
cells [1]. It typically follows an indolent course character-
ized by chronic relapsing disease, yet generally favorable 
outcomes. However, approximately 2 to 3% of FL patients 
experience histologic transformation to an aggressive 
lymphoma, predominantly diffuse large B-cell lymphoma 
with germinal center phenotype (GCB-DLBCL) [2]. 
Transformed follicular lymphoma (t-FL) poses a clinical 
challenge due to its rapid progression, resistance to treat-
ment, and poor prognosis, resulting in a median survival 
of less than 2 years [3, 4]. Active treatment, such as the 
R-CHOP regimen (rituximab, cyclophosphamide, doxo-
rubicin, vincristine, and prednisone), is recommended 
and considered effective [5]. Although biopsy with immu-
nohistochemical examination is the standard for confirm-
ing t-FL [6], it is limited by factors such as sampling bias 
and the challenge of obtaining specimens from lesions in 
inaccessible locations. Moreover, biopsy only indicates 
whether the sampled lesion has undergone transforma-
tion, disregarding the intertumoral heterogeneity within 
the same patient [3]. Therefore, a more comprehensive 
and non-invasive method is needed to accurately identify 
t-FL and aid in clinical decision-making.

FL almost always exhibits FDG avidity, irrespective 
of its grade [7]. 18F-FDG PET/CT is currently consid-
ered the standard technique for staging, restaging, and 
evaluating responses in FL [8]. Previous studies have 
demonstrated that an SUVmax cutoff of 10 to 13 can 
differentiate between low-grade and aggressive lympho-
mas [9, 10]. Other studies have suggested a correlation 
between transformed and non-transformed low-grade 
lymphoma on SUVmax, including FL and t-FL [11–13]. 
However, these studies included a heterogeneous mix 
of various lymphomas rather than focusing solely on FL 
and were limited by small sample sizes. Additionally, 
metabolic parameters like SUVmax have limited ability 
to reflect tumor heterogeneity, a key feature of histologic 
transformation.

Artificial intelligence (AI) technology applied in medi-
cal imaging facilitates the extraction and analysis of 
numerous objective and quantifiable features from CT, 
PET, MRI, and ultrasound images in a high-through-
put manner. Certain features may reveal connections 
between subtle radiological phenotypes and specific 
aspects of the underlying pathobiology [14], such as the 
Richter transformation of indolent chronic lymphocytic 
leukemia into DLBCL [15, 16]. Research conducted at a 
single center by de Jesus and colleagues demonstrated 
that machine learning analysis of handcrafted radiomics 
from [18F]FDG PET/CT scans can effectively differenti-
ate between follicular lymphoma (FL) and DLBCL [17]. 

Deep learning (DL)-based radiomics has emerged as an 
advanced quantitative tool, with recent studies highlight-
ing its potential to predict pathological features from 
medical images [18–20]. Therefore, we conducted this 
multi-center study, involving five independent medical 
centers, to leverage radiomics from PET/CT images and 
construct an R-signature for accurately identifying FL 
patients with histologic transformation.

Methods
Study population
This study was approved by the institutional review 
boards of the involved centers (IRB No. 2024–1010). 
Informed consent was waived due to the retrospec-
tive nature of this study. In this multicenter study, 784 
patients from five independent medical centers were 
included: West China Hospital, Sichuan University 
(center I), Jiangsu Province Hospital, the First Affili-
ated Hospital of Nanjing Medical University (center II), 
Nanjing Drum Tower Hospital, the Affiliated Hospital of 
Nanjing University Medical School (center III), the First 
Affiliated Hospital of Xiamen University (center IV), and 
Qilu Hospital of Shandong University (center V). Inclu-
sion criteria were as follows: (1) confirmed histopatho-
logical diagnosis of primary FL (I-II or IIIa grades), de 
novo GCB-DLBCL, and t-FL according to the World 
Health Organization’s classification [21]; (2) no history 
of other tumors; (3) availability of comprehensive medi-
cal records. Exclusion criteria included (1) prior history 
of other tumors; (2) incomplete medical records; (3) his-
topathological diagnosis of FL (IIIb grade); and (4) trans-
formations from FL to other histological types (Burkitt or 
Hodgkin lymphoma). The workflow of patient selection is 
shown in Fig. 1.

PET/CT scanning protocol
All patients underwent PET/CT scans with one of the 
following systems: Gemini GXL, UM780PET/CT, Bio-
graph 16 PET/CT, GE discovery PET/CT clarity 710, 
GE Discovery MI, GE Discovery STE. Patients fasted for 
at least 6 h before scans, resulting in blood glucose lev-
els under 8.7 mmol/L. Then, 185–370 MBq of [18F]FDG 
(5.18 MBq/kg) was administered intravenously. The PET/
CT scans (from the base of the skull to the upper thigh) 
were performed 60  min after the radiopharmaceutical 
injection. Emission data were acquired for 1–2  min in 
each bed position.

Delineation of target lesions
The lymph node was selected for delineation based on 
the patient’s biopsy records. Semi-automatic delinea-
tion was performed using LIFEx-7.3.0 software (https://​
www.​lifex​soft.​org/) [22]. The tumor volume of interest 
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(VOI) was delineated on PET images using a 41% SUV-
max threshold method, which allowed for the calculation 
of the tumor’s SUVmax. All PET/CT images were jointly 
reviewed by two attending nuclear medicine specialists 
with 8  years of experience. In cases of disagreement, a 
senior nuclear medicine physician participated and made 
the final decision. To minimize the impact of PET/CT 
scanners from different manufacturers on radiomic fea-
tures, we applied ComBat harmonization (https://​github.​
com/​Jfort​in1/​ComBa​tHarm​oniza​tion) to harmonize the 
PET/CT images.

PET/CT image registration
We employed a CT-to-PET registration approach, with 
PET images serving as the reference and CT images as 
the moving images. The registration process was imple-
mented using the open-source library SimpleElastix 
(https://​simpl​eelas​tix.​github.​io/), which is integrated 
into Python and supports 3D medical image registration. 
During the registration, the “rigid” registration mode 
was selected. Once the CT images were successfully reg-
istered, we applied nearest-neighbor interpolation to 
resample the registered CT images, aligning their spatial 
resolution with that of the PET images.

EMFusion‑based PET/CT image fusion
After registration, the CT image is in the same spatial 
resolution as the PET image. To enhance lymphoma 
classification performance based on images and to 
reduce the redundancy of information extracted from 
the two modalities, we explored the fusion of PET and 
CT images. Here, we applied the unsupervised EMFu-
sion method proposed by Xu et  al. for PET and CT 
image fusion [23]. The backbone network in the EMFu-
sion model consists of eight convolutional layers, with 
dense connection layers in the first four. Short connec-
tions were established between each layer in the first four, 
and between the first four and the remaining layers in a 
feed-forward manner. This architecture alleviates van-
ishing gradients, enhances feature propagation, and sig-
nificantly reduces parameters. Lastly, features extracted 
by the first four layers are fed into subsequent convo-
lutional layers to gradually reduce the number of chan-
nels and produce the final fusion image. Before using the 
trained EMFusion model for PET and CT image fusion, 
the single-channel grayscale PET and CT slices are con-
verted into RGB three-channel images to meet the input 
requirement of EMFusion. The image size is uniformly 
scaled to 180 × 180 × 3 as input, and the output image size 
is 180 × 180 single-channel grayscale image. Considering 

Fig. 1  Flow chart of participant selection
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that feature extraction will be implemented using the 
lesion region delineated by physicians, the fused gray-
scale image is resized to the original PET image size.

Feature extraction and R‑signature construction
We constructed a 2D image classification model based 
on annotated lesion areas after obtaining the fused 
image. During model training, we used top-down 2D 
views of the fused images in the training set. ResNet18 
was chosen as the backbone network for our classifica-
tion model. ResNet18 is a well-established architecture 
known for its effectiveness in preventing overfitting and 
gradient explosion, while also having a relatively mod-
est number of parameters. Only the biopsied lesion was 
used to extract radiomic features and deep features. The 
input images for the classification model are cropped 
images based on the lesion annotation (lesion ROI), 
and are resized to 128 × 128 pixels. We used the pyradi-
omics library (https://​pyrad​iomics.​readt​hedocs.​io/​en/​
latest/) in Python for radiomic feature extraction. Each 
3D fused lesion ROI yielded 1967 radiomics features. 
We employed the ResNet18 to extract deep features 
from 2D lesion areas from each 3D fused lesion ROI, 
followed by weighted feature averaging. Here, averag-
ing features is to reduce the dimension of the feature 
vector, and the number of slices is not fixed for differ-
ent subjects. This process allowed us to extract 16,379 
deep features for each 3D fused lesion ROI. Radiomic 
feature selection utilized ICC (intraclass correlation 
coefficient) consistency analysis, while LASSO regres-
sion analysis was employed for deep feature selection. 

By comparing the similarity of features extracted from 
lesion ROIs delineated by two experts, we set a fea-
ture selection threshold (e.g., ICC > 0.8) and selected 
520 radiomic features. LASSO regression analysis was 
employed to calculate the importance of deep features, 
selecting those with an importance greater than 0.

After selecting features, the radiomic and deep fea-
tures were input into the AutoGluon (a highly inte-
grated auto-machine-learning library, version 0.7.0, 
available at https://​auto.​gluon.​ai) for classification 
model training. Thirteen general classifiers (including 
KneighborsUnif, KNeighborsDist, LightGBMLarge, 
XGBoost, ExtraTreesGini, ExtraTreesEntr, Random-
ForestEntr, LightGBM, CatBoost, NeuralNetTorch, 
LightGBMXT, RandomForestGini, and NeuralNet-
FastAI) were trained with the AutoGluon library, then 
integrated into a strong classifier through a weighted 
ensemble strategy to generate the prediction probabil-
ity for constructing the signature.

We pooled data from the five centers, comprising 
a total of 459 cases of FL. We randomly selected 80 FL 
cases, along with 25 t-FL cases, to constitute the t-FL test 
cohort. The remaining 379 grade FL cases were com-
bined with 300 GCB-DLBCL cases to form the training 
and internal validation group. The training and internal 
validation cohort underwent fivefold cross-validation, 
producing five models. Each of these models was then 
applied to the t-FL test cohort. The classification results 
for the t-FL test cohort were averaged predicted proba-
bilities from the five models, which were used to form the 
R-signature. The workflow of this study is shown in Fig. 2.

Fig. 2  Analysis workflow in this study
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Establishment of t‑FL scoring system
Univariate and multivariate logistic regression analyses 
were used to identify significant risk factors in the t-FL 
test cohort. These factors were then combined to develop 
the t-FL scoring system. Each risk factor was assigned 
1 point, and the total score for each patient was calcu-
lated. Based on the total score, patients were classified 
into three risk groups: low risk (0–1 points), medium 
risk (2 points), and high risk (3–5 points). To assess the 
incremental predictive value of the t-FL scoring system, 
we developed two competing systems. The first system, 
referred to as the clinical scoring system, included clini-
cal factors (age, LDH, and ECOG PS). The second system, 
referred to as the metabolic scoring system, incorporated 
both clinical factors and SUVmax. Calibration curves and 
ROC curves were generated for both systems. Addition-
ally, decision curve analysis (DCA) was performed to 
estimate the false-positive rate for the systems.

Statistical analysis
Data analysis was conducted using IBM SPSS 25 and 
R software (version 4.2.2, www.R-​proje​ct.​org). Differ-
ences in clinical features, pathological characteristics, 
and SUVmax between the training and validation groups 
were assessed using the chi-squared test. Discrimination 
capability was evaluated by estimating the area under the 
receiver operating characteristic (ROC) curve. Logistic 
regression analysis was used to explore the predictive 
value of potential independent response predictors and 
to construct models. Progression-free survival (PFS) and 
overall survival (OS) were used as endpoints to assess 
patient prognosis. Survival analysis was performed using 
the Kaplan–Meier method, with comparisons made 
using the log-rank test. A p-value of less than 0.05 was 
considered statistically significant for all analyses.

Results
Patient characteristics
The baseline characteristics of patients included in the 
training, internal validation, and t-FL test cohorts are 
summarized in Table 1. In the t-FL test cohort, the preva-
lence of t-FL patients was 23.8%. Statistically significant 
differences were observed between FL and t-FL in age, 
LDH level, and ECOG PS (all P < 0.05).

Performance of R‑signature in predicting t‑FL
The R-signature in the fivefold cross-validation distin-
guished between DLBCL and FL, with mean AUC val-
ues of 0.994 (ranging from 0.992 to 0.998) in the training 
cohort and 0.976 (ranging from 0.961 to 0.991) in the 
internal validation cohort (see Fig.  3). For the t-FL test 

cohort, the mean R-signature from the fivefold cross-val-
idation achieved an AUC of 0.749 (95% CI 0.635 to 0.863) 
with optimal cutoff values of 0.217 (see Figs. 3 and 4).

Comparison between SUVmax and R‑signature 
in predicting t‑FL
The optimal cutoff value of SUVmax was 9.65, with an 
AUC of 0.683 (95% CI 0.574 to 0.793). Sensitivity (SE), 
specificity (SP), positive predictive value (PPV), negative 
predictive value (NPV), positive likelihood ratio (PLR), 
negative likelihood ratio (NLR), and accuracy in predict-
ing t-FL are listed in Table 2. The differences in the clini-
cal characteristics between the dichotomized R-signature 
and SUVmax groups are shown in Table 3.

Predictive performance of R‑signature
The R-signature demonstrated strong predictive perfor-
mance, significantly distinguishing between PFS and OS 
outcomes in the t-FL test cohorts (see in Fig.  5). Statis-
tically significant differences were observed between the 
high and low R-signature groups, with P values of 0.029 
for PFS and 0.023 for OS. Table  4 provides a detailed 
comparison between the prognostic stratification based 
on pathological results and model predictions.

Multivariable analysis for t‑FL prediction
The univariate and multivariate analysis results revealed 
that clinical variables, including age (OR = 3.502, 95% 
CI 1.181–10.380; P = 0.024), LDH (OR = 5.171, 95% CI 
1.529–17.490; P = 0.008), and ECOG PS (OR = 3.231, 
95% CI 1.174–8.891; P = 0.023), were identified as inde-
pendent predictors of t-FL. Furthermore, SUVmax 
(OR = 3.252, 95% CI 1.136–9.309; P = 0.028) and R-signa-
ture (OR = 6.069, 95% CI 2.187–16.845; P = 0.001) were 
also identified as independent predictors of t-FL (see in 
Fig. 6).

Establishment and assessment of t‑FL scoring system
The t-FL scoring system, incorporating R-signature, 
SUVmax, age, LDH, and ECOG PS status, was developed 
using the t-FL test cohort (see in Fig.  7). The patients 
were divided into three risk groups: low-risk group (55 
participants), medium-risk group (29 participants), 
and high-risk group (21 participants). In a subanalysis, 
the high-risk group (14 t-FL in 21 patients, 66.7%) had 
a relatively higher rate than those in the low-risk group 
(4 t-FL in 55 patients, 4.5%) and the medium-risk group 
(7 t-FL in 29 patients, 24.1%) (see in Fig. 7). Calibration 
curves for the t-FL scoring system indicated good agree-
ment between predictions and actual observations (see 
in Fig. 7). The t-FL scoring system demonstrated strong 
performance in t-FL prediction with an AUC of 0.820 
(95% CI 0.725 to 0.914) (see in Fig.  7). It outperformed 

http://www.R-project.org
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the clinical scoring system based solely on ECOG PS and 
LDH, which had an AUC of 0.739 (95% CI 0.641 to 0.836), 
and the metabolic scoring system incorporating ECOG, 
LDH, and SUVmax, which had an AUC of 0.741 (95% 
CI 0.642 to 0.839). Furthermore, DCA indicated that the 
t-FL scoring system provided a greater overall net benefit 
compared to competing scoring systems across most risk 
thresholds (see in Fig. 7).

Discussion
This study aimed to develop a non-invasive method using 
PET/CT imaging to identify histological transformation 
in follicular lymphoma (t-FL). Our results showed that 
the R-signature, derived from radiomics analysis, exhib-
ited strong predictive power for identifying t-FL. By 
combining the R-signature with clinical parameters and 
SUVmax, we developed a t-FL scoring system that effec-
tively stratifies patients based on their risk of transforma-
tion, thereby aiding clinical decision-making.

FDG-PET imaging for non-Hodgkin lymphoma 
(NHL) often requires time-consuming manual analysis 
to accurately quantify tumor burden for risk assess-
ments. The integration of artificial intelligence (AI) in 
medical imaging, however, has significantly advanced 
automated segmentation in PET imaging for NHL. 
Deep learning, for instance, can now automatically 
segment DLBCL lesions and compute tumor volume, 
greatly reducing the time and effort required by clini-
cians [24–26]. Additionally, AI-based PET imaging has 
shown exceptional performance in virtual biopsy appli-
cations. For example, assessing bone marrow involve-
ment in NHL is crucial for clinical decision-making [27, 
28]. Machine learning-selected radiomic features in AI-
based PET imaging can offer a promising non-invasive 
method for evaluating bone marrow involvement in 
DLBCL and FL [29, 30]. Moreover, radiomics, which 
extracts relevant imaging information, is considered 
capable of effectively assessing the three-dimensional 

Table 1  Characteristics of the study population

Abbreviations: DLBCL diffuse large B-cell lymphoma, FL follicular lymphoma, t-FL transformed follicular lymphoma, LDH lactate dehydrogenase, ECOG PS Eastern 
Cooperative Oncology Group performance status, LDH lactate dehydrogenase, β2-MG β2-microglobulin
＃ Median (range)
＊ P value derived from the Mann–Whitney U test or χ2 test in t-FL test cohort

A P-value of < 0.05 indicates statistical significance

Characteristic Training and internal validation cohort t-FL test cohort P value*

FnL (n = 379) DLBCL (n = 300)  FL (n = 80)  t-FL (n = 25)

Gender

  Male 171 167 36 12 0.822

  Female 208 133 44 13

Age (years)

  Median# 55 51 49 57 0.019

  Q1–Q3 45–67 42–59 41–58 48–68

Elevate LDH

  No 307 185 71 17 0.026

  Yes 72 115 9 8

ECOG PS

  0–1 356 271 59 12 0.026

   ≥ 2 23 29 21 13

Ann arbor staging

  I–II 81 143 17 3 0.391

  III–IV 298 157 63 22

B symptoms

  No 317 223 61 22 0.268

  Yes 62 77 19 3

Hemoglobin < 120 g/L

  No 292 - 56 16 0.625

  Yes 87 - 24 9

Elevate Serum β2-MG

  No 189 - 42 9 0.174

  Yes 190 - 38 16
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Fig. 3  Performance of the R-signature in distinguishing between DLBCL and FL, and in t-FL. A The ROC curves for each fold in the fivefold 
cross-validation in the training cohort. B Performance metrics in the training cohort. C The ROC curves for each fold in the fivefold cross-validation 
in the internal validation cohort. D Performance metrics in the internal validation cohort. E The ROC curves for each fold in the fivefold 
cross-validation and the mean in the t-FL test cohort. F Performance metrics in the t-FL test cohort
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Fig. 4  Comparison of PET/CT fusion imaging, R-signature, and histopathology for FL (I, II, and IIIa grades) and t-FL. A I Grade FL: CT, PET, and fusion 
images; R-signature score 0.023 (low risk); HE staining shows predominantly centrocytes within the tumor follicles with slightly irregular nuclei. 
B II Grade FL: CT, PET, and fusion images; R-signature score 0.081 (low risk); HE staining shows tumor follicles containing both centrocytes 
and centroblasts, with a predominance of centrocytes. C IIIa Grade FL: CT, PET, and fusion images; R-signature score 0.138 (low risk); HE staining 
shows numerous centroblasts scattered among centrocytes. D t-FL: CT, PET, and fusion images; R-signature score 0.806 (high risk); HE staining 
shows sheets of aggregated centroblasts
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tumor landscape and decoding the phenotypes of vari-
ous histological structures [31]. In our study, the R-sig-
nature demonstrated high accuracy and AUC values, 
ranging from 0.992 to 0.998 in the training cohort and 
0.961 to 0.991 in the internal validation cohort, effec-
tively distinguishing between FL and DLBCL. These 
results are consistent with previous studies, such as 
those by de Jesus et  al. [17], which highlighted the 
potential of machine learning and handcrafted radi-
omic features from [18F]FDG PET/CT scans in dif-
ferentiating FL and DLBCL. This indicates that the 
R-signature constructed by radiomics effectively cap-
tures the complex imaging patterns associated with 
t-FL and demonstrates good transportability. Further-
more, the R-signature outperformed SUVmax in terms 
of sensitivity, specificity, PPV, NPV, and accuracy. SUV-
max, a conventional metabolic parameter, can be influ-
enced by inflammatory cell uptake. Studies have shown 
that high FDG avidity in FL is linked to inflammatory 

cell uptake in the tumor microenvironment, rather than 
tumor cells [32].

Our study demonstrates that the R-signature has sig-
nificant prognostic predictive value. Previous research 
has confirmed that t-FL exhibits a markedly poorer prog-
nosis compared to FL [3, 4]. A multicenter study in the 
USA reported that patients with t-FL have an estimated 
5-year overall survival (OS) rate of only 49%, which 
is even lower than that of de novo DLBCL, with an OS 
rate of 57% [33]. As shown in Fig.  5 and Table  4, while 
the R-signature demonstrates slightly lower performance 
in prognostic stratification compared to pathological 
results, it represents a promising non-invasive biomarker 
that could serve as a viable alternative for assessing prog-
nosis in patients.

To enhance image fusion, we employed the unsu-
pervised EMFusion method, proposed by Xu et  al., 
for PET/CT image integration [23]. Unlike traditional 
fusion methods such as DDcGAN and CNN, EMFusion 

Table 2  Prediction of t-FL with SUVmax and R-signature

Prediction of survival based on evaluation with SUVmax and R-signature

SE sensitivity, SP specificity, PPV positive predictive value, NPV negative predictive value, PLR positive likelihood ratio, NLR negative likelihood ratio, ACC​ accuracy, AUC 
area under the curve

Parameters SE SP PPV NPV PLR NLR ACC​ AUC​

SUVmax 64.0% 62.5% 34.8% 84.7% 1.71 0.576 62.9% 0.683

R-signature 68.0% 77.5% 48.6% 88.6% 3.02 0.413 75.2% 0.749

Table 3  Comparison of the R-signature with the patient clinical data in the t-FL test cohort

Abbreviations: LDH lactate dehydrogenase, ECOG PS Eastern Cooperative Oncology Group performance status, LDH lactate dehydrogenase, β2-MG β2-microglobulin
* P value derived from χ2 test in t-FL test cohort

A P-value of <0.05 indicates statistical significance

Characteristic R-signature P value* SUVmax P value*

Low (n = 70) High (n = 35) Low (n = 59) High (n = 46)

Gender Male 28 20 0.103 32 25 1.000

Female 42 15 27 21

Age (years)  < 60 60 21 0.006 48 33 0.254

 ≥ 60 10 14 11 13

Elevate LDH no 65 23 0.001 52 36 0.192

yes 5 12 7 10

ECOG PS 0–1 59 12 0.026 41 30 0.687

 ≥ 2 21 13 18 16

Ann arbor staging I–II 11 9 0.292 13 7 0.457

III–IV 59 26 46 39

B symptoms No 54 29 0.615 47 36 1.000

Yes 16 6 12 10

Hemoglobin < 120 g/L No 45 27 0.265 39 33 0.672

Yes 25 8 20 13

Elevate Serum β2-MG No 38 13 0.147 32 19 0.293

Yes 32 22 27 27
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accounts for structural information from the source 
images (e.g., constraints based on salience and abun-
dance) [34–39]. It preserves and enhances distinct infor-
mation from each modality by introducing depth-level 
constraints and considering chromatic information in 
PET images. This results in fused images that combine 
the structural details of CT with the functional infor-
mation of PET. Furthermore, we utilized deep learning 
networks for feature extraction, enabling more robust 
and comprehensive analysis of the imaging data. In the 
classification stage, we applied the automated machine 
learning model AutoGluon, which trains multiple weak 
classifiers and generates a strong ensemble classifier 
using weighted methods [40]. This ensemble approach 
helps mitigate overfitting, provides a more comprehen-
sive analysis of the features, and ensures more stable and 
reliable predictive performance.

In the present study, age, LDH, and ECOG PS were 
identified as independent clinical predictors of t-FL. 
Additionally, an SUVmax of 9.65 was determined as the 
optimal cut-off value for distinguishing between FL and 
t-FL, with multivariate logistic analysis indicating that 

SUVmax is also an independent predictor (OR = 3.252, 
95% CI 1.136–9.309; P = 0.028). These findings are con-
sistent with previous studies [9–13, 41–43]. The t-FL 
scoring system we developed incorporates the R-signa-
ture, along with SUVmax, age, LDH, and ECOG PS. This 
combined approach achieved an AUC of 0.820, outper-
forming other scoring systems, thereby highlighting the 
added value of integrating radiomics-based imaging 
biomarkers into conventional assessment protocols. The 
scoring system stratified patients into low-risk (4 t-FL in 
55 patients, 4.5%), medium-risk (7 t-FL in 29 patients, 
24.1%), and high-risk (14 t-FL in 21 patients, 66.7%) 
groups, with significantly different proportions of t-FL, 
facilitating more tailored treatment strategies.

Our study has several limitations. First, due to its retro-
spective design, there may be inherent selection bias. Sec-
ond, we observed a reduction in diagnostic performance 
when the R-signature was applied to the t-FL test cohort. 
Following the approach of de Jesus et  al. [17], DLBCL 
was selected as the positive control in the training and 
internal validation sets. Despite the clinical and patho-
logical similarities between DLBCL and t-FL, including 

Fig. 5  Kaplan–Meier survival analyses of PFS and OS according to the pathological result (A, B) and R-signature (C, D)
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Fig. 6  Forest plot showing the underlying predictors of t-FL based on the results of univariate and multivariate logistic analyses

Fig. 7  The t-FL scoring system and its evaluation. A The t-FL scoring system classifies patients into low, medium, and high-risk groups based 
on their scores. B Bar chart showing the percentage of t-FL patients in the low, medium, and high-risk groups. C Calibration curve showing 
the observed risk versus predicted probability for the t-FL scoring system. D ROC curves for the t-FL scoring system, clinical scoring system, 
and metabolic scoring system. E Decision curve analysis comparing the net benefit of different scoring systems across various high-risk thresholds
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comparable morphology [44], there are inherent differ-
ences in their genetic mutation patterns and biological 
characteristics [45, 46], which may explain the observed 
variations in model performance between the internal 
validation and t-FL test cohorts. Moreover, due to the low 
incidence of t-FL, only 25 t-FL samples were included in 
the test cohort. This limited sample size may have further 
constrained the model’s performance when evaluated as 
an independent test set. Future studies should include 
a larger t-FL dataset and establish comprehensive data-
bases to improve model performance and generalizabil-
ity. Additionally, data augmentation techniques, such as 
Generative Adversarial Networks (GANs) and Diffusion 
models, should be explored to expand sample sizes for 
rare diseases and enhance model robustness. Third, there 
was heterogeneity in PET/CT image acquisition across 
the patient cohorts from five independent medical cent-
ers, which may have influenced the extracted features 
and, consequently, the performance of the model.

Conclusions
This study demonstrates the feasibility and effectiveness 
of using radiomics analysis of PET/CT images for the 
non-invasive identification of t-FL. The t-FL scoring sys-
tem developed in this study provides a valuable tool for 
clinical decision-making, with the potential to improve 
patient management and outcomes.
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