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Abstract 

Background  Sepsis-associated acute kidney injury (SA-AKI) is a frequent complication in patients with sepsis 
and is associated with high mortality. Therefore, early recognition of SA-AKI is essential for administering supportive 
treatment and preventing further damage. This study aimed to identify and validate metabolite biomarkers of SA-AKI 
to assist in early clinical diagnosis.

Methods  Untargeted renal proteomic and metabolomic analyses were performed on the renal tissues of LPS-
induced SA-AKI and sepsis mice. Glomerular filtration rate (GFR) monitoring technology was used to evaluate real-
time renal function in mice. To elucidate the distinctive characteristics of SA-AKI, a multi-omics Spearman correlation 
network was constructed integrating core metabolites, proteins, and renal function. Subsequently, metabolomics 
analysis was used to explore the dynamic changes of core metabolites in the serum of SA-AKI mice at 0, 8, and 24 h. 
Finally, a clinical cohort (28 patients with SA-AKI vs. 28 patients with sepsis) serum quantitative metabolomic analysis 
was carried out to build a diagnostic model for SA-AKI via logistic regression (LR).

Results  Thirteen differential renal metabolites and 112 differential renal proteins were identified through a multi-
omics study of SA-AKI mice. Subsequently, a multi-omics correlation network was constructed to highlight five 
core metabolites, i.e., 3-hydroxybutyric acid, 3-hydroxymethylglutaric acid, creatine, myristic acid, and inosine, 
the early changes of which were then observed via serum time series experiments of SA-AKI mice. The levels 
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of 3-hydroxybutyric acid, 3-hydroxymethylglutaric acid, and creatine increased significantly at 24 h, myristic acid 
increased at 8 h, while inosine decreased at 8 h. Ultimately, based on the identified core metabolites, we recruited 56 
patients and constructed a diagnostic model named IC3, using inosine, creatine, and 3-hydroxybutyric acid, to early 
identify SA-AKI (AUC = 0.90).

Conclusions  We proposed a blood metabolite model consisting of inosine, creatine, and 3-hydroxybutyric acid 
for the early screening of SA-AKI. Future studies will observe the performance of these metabolites in other clinical 
populations to evaluate their diagnostic role.

Keywords  Sepsis-associated acute kidney injury, Sepsis, Multi-omics analysis, Metabolome, Proteome, Diagnostic 
biomarkers

Background
Sepsis is a life-threatening organ dysfunction caused by 
a dysregulated immune response to infection. Deaths 
caused by sepsis account for approximately 20% of total 
global deaths [1, 2]. Approximately one-third of patients 
with sepsis in the intensive care unit (ICU) develop sep-
sis-associated acute kidney injury (SA-AKI) [3], and the 
mortality rate among patients with SA-AKI is as high as 
41% [4]. AKI patients experience longer hospitalizations 
(+ 3.5 days) and higher medical costs (+ $9000) com-
pared to those without renal impairment [5], emphasiz-
ing the critical need for early SA-AKI diagnosis.

Currently, the clinical diagnosis of AKI primarily relies 
on serum creatinine and urine output [6]. However, cre-
atinine levels exhibit significant individual variability, 
while urine output is influenced by multiple factors such 
as fluid volume and cardiac function [7]. Moreover, stud-
ies have found that plasma neutrophil gelatinase-associ-
ated lipocalin (NGAL) is able to predict renal recovery in 
patients with SA-AKI [8], but the conclusion is not sup-
ported by other researches [9, 10]. For instance, Wong 
et al. discovered NGAL levels can increase in infectious 
patients without AKI [9]. Johan et al. found no difference 
in NGAL between patients with and without AKI [10]. 
Besides, kidney injury molecule-1 (Kim-1) is another bio-
marker for renal injury [11], but it is less studied in SA-
AKI diagnosis. Thus, it is critical to explore new specific 
biomarkers for the early diagnosis of SA-AKI.

Renal metabolomics sequencing has focused on small 
molecular substances, identifying specific biomarkers 
for renal injury [12]. The integration of metabolomics 
with other high-throughput omics will be more condu-
cive to the research on biomarkers [13, 14]. Moreover, a 
large number of machine learning algorithms have been 
developed and widely used to identify diagnostic and 
predictive biomarkers, such as support vector machine 
(SVM) and logistic regression [15–17]. For example, 
Lusczek et  al. used machine learning methods to select 
three metabolites, lactic acid, 1-methylnicoinamide, and 
glycine, to predict the death of AKI patients [15]. This 
study employed proteomic and metabolomic techniques 

to identify biomarkers associated with SA-AKI. The 
potential of core metabolites as early diagnostic biomark-
ers for SA-AKI was evaluated through time series of 
mice serum. Based on the above biomarkers, a diagnos-
tic model for SA-AKI was constructed within a clinical 
cohort using machine learning techniques.

Methods
Study design
In this study, we aimed to identify biomarkers for early 
diagnosis of SA-AKI via multi-omics and clinical data 
(Fig.  1). Real-time fluorescence imaging technology was 
utilized to measure the glomerular filtration rate (GFR) 
[18, 19], combined with assessment of creatinine and 
blood urea nitrogen (BUN) to distinguish septic mice 
and SA-AKI mice. Then, we constructed an integrated 
Spearman correlation network for renal metabolomics 
and proteomics to highlight five core metabolites, i.e., 
3-hydroxybutyric acid, 3-hydroxymethylglutaric acid, 
inosine, myristic acid, and creatine. The potential of these 
metabolites as early diagnostic biomarkers was then eval-
uated by tracking the changes in the activity of five core 
metabolites in mice serum at three distinct time points: 
0, 8, and 24 h. Furthermore, three out of them (inosine, 
creatine, and 3-hydroxybutyric acid) were validated in a 
cohort including 56 patients (28 patients with SA-AKI 
vs. 28 patients with sepsis) using targeted quantitative 
metabolomics. Finally, we developed a logistic regression 
model to diagnose SA-AKI and to assess the severity of 
the disease.

SA‑AKI mice construction
Twenty-eight male C57BL/6 mice (aged 8–10  weeks, 
weighing 25–30  g) were purchased from Charles River 
Laboratory Animal Technology Co. Ltd. (Beijing, China). 
The mice were placed in special cages with free access 
to food and water, four to each cage, and the cages were 
housed in a room with a 12-h light–dark cycle at a tem-
perature of 22 °C.

Mice were randomly assigned to two parts. In the first 
part, sixteen mice received LPS (10  mg/kg, i.p.) and 
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were euthanized at 24  h. Septic mice or SA-AKI mice 
were differentiated by measuring glomerular filtration 
rate (GFR), blood urea nitrogen (BUN), and creatinine 
levels. In the second part, mice were divided into 3 
groups for the experiment, with 4 mice in each group. 
They were killed at 8 and 24  h following the injection 
of LPS (10 mg/kg, i.p.). The 0-h group (N = 4), serving 
as a control, received an intraperitoneal injection of an 

equal volume of 0.9% saline. All animal experiments 
were conducted in compliance with National Institutes 
of Health guidelines and were approved by the Labo-
ratory Animal Management and Welfare Ethics Com-
mittee of the First Affiliated Hospital of Harbin Medical 
University (Ethical Approval Number: 2023022). The 
detailed construction process of SA-AKI mice is 
described in the Additional file 1.

Fig. 1  Research design. Biotechnology, bioinformatics, and machine learning methods were integrated in this study to identify effective 
biomarkers for early diagnosis of SA-AKI. Firstly, SA-AKI and sepsis mice were established through LPS injection, with glomerular filtration 
rate measured via real-time fluorescence imaging. A Spearman correlation network was constructed from renal metabolomics, proteomics, 
and biochemical markers in SA-AKI and sepsis mice, from which five core metabolites were identified. Subsequently, we characterized the time 
series of core metabolites at 0, 8, and 24 h in septic mice to explore their potential as biomarkers for early diagnosis of SA-AKI. Finally, the IC3 model 
was established based on three core metabolites from a clinical cohort for early prediction of SA-AKI
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Patient recruitment and sample collection
From August 2022 to March 2023, a total of 56 patients 
(28 patients with SA-AKI vs. 28 patients with sepsis) 
were retrospectively enrolled for a clinical study at the 
Department of Critical Care Medicine, Second Affili-
ated Hospital of Harbin Medical University. Enrollment 
criteria included (1) aged between 18 and 65 years old, 
(2) patients with sepsis meeting the Sepsis-3 criteria [20], 
and (3) patients with SA-AKI meeting the Kidney Dis-
ease: Improving Global Outcomes (KDIGO) diagnostic 
criteria [21, 22], with an increase in serum creatinine of 
0.3 mg/dl (> 26.5 μmol/L) within 48 h, or an increase to 
more than 1.5 times the baseline value. Exclusion crite-
ria were as follows: (1) discharge or death within 24 h 
after ICU admission, (2) presence of malignant tumors, 
(3) immunodeficiency or autoimmune diseases, and 
(4) insufficient clinical information. In accordance with 
standardized protocols, all pertinent clinical data were 
collected.

Peripheral venous blood samples were obtained from 
patients on the first day of diagnosis. The samples were 
centrifuged at 3000 rpm for 15 min, and 100 µl of super-
natant serum from each sample was immediately frozen 
in liquid nitrogen and then stored at − 80 °C. The clinical 
investigation was approved by the Ethics Committee of 
the Second Affiliated Hospital of Harbin Medical Univer-
sity (Ethical Approval Number: KY2021-188) and strictly 
complied with the ethical standards of the Declaration of 
Helsinki.

Omics research
Detailed metabolomics, proteomic sequencing methods, 
and data quality control methods are presented in Addi-
tional file 1 [23–30].

Statistical analysis
Differential analysis
The values are expressed as mean ± standard deviation 
(SD) (for continuous variables) or n (%) (for categori-
cal variables). Difference analysis was performed using 
T-test (two-sided) on renal metabolomic (8 SA-AKI mice 
vs. 7 sepsis mice) and proteomic data (6 SA-AKI mice vs. 
6 sepsis mice). The Benjamini–Hochberg correction was 
applied to control the false discovery rate (FDR), and the 
significant threshold was set to q < 0.01 and |Log2(Fold 
Change)|> 1. Time series serum metabolomics from 
SA-AKI mice (0 h–8 h–24 h, N = 4) were performed via 
ANOVA test. Mice biochemical indicators (8 SA-AKI 
mice vs. 8 sepsis mice) and human serum targeted quan-
titative metabolomic sequencing data (28 patients with 
sepsis vs. 28 patients with SA-AKI) were measured by 
normality test, and then T-test (two-sided) or Wilcoxon 
sign-rank (two-sided) was decided. Serum-targeted 

quantitative metabolomics sequencing data was then 
subgroup analyzed by sex, and the significance thresh-
old was set at p < 0.05. Univariate logistic regression was 
applied to evaluate the impact of serum metabolites on 
SA-AKI, and the odds ratio (OR) was used as a quantita-
tive index to describe the impact.

Correlation analysis and network construction
Spearman correlation analysis was used to explore the 
association between biochemical indicators and differ-
ential renal metabolites or proteins, and the significant 
threshold of the correlation was set at q < 0.01. Core 
metabolites with a metabolite-protein degree > 50 were 
identified. Multi-omics networks were constructed using 
Cytoscape (v3.10.0) software to elucidate their interac-
tions and biological functions.

Machine learning models
Receiver operating characteristic (ROC) curves were gen-
erated to evaluate the diagnostic capability of 3-hydroxy-
butyric acid, creatine, and inosine in differentiating 
SA-AKI from patients with sepsis. Clinical cohort data 
were randomly divided into training (70%) and test (30%) 
sets. Four machine learning algorithms, including logis-
tic regression (LR), random forest (RF), support vector 
machine (SVM), and extreme gradient boosting (XGB), 
were applied to train diagnostic models. Model perfor-
mance was robustly estimated by calculating the average 
AUC across 10 independent test sets. Statistical analysis 
and modeling procedures were performed via RStudio 
(v4.2.2).

Results
Metabolomic variations between SA‑AKI and sepsis
Plasma BUN (65 [46,76] vs. 8.19 [7.28,9.1], p < 0.05) and 
creatinine (70 [62,73] vs. 28 [26,30], p < 0.05) were signif-
icantly higher in SA-AKI mice than in sepsis mice, and 
GFR (0.59 ± 0.08 vs. 0.95 ± 0.17, p < 0.05) was significantly 
lower in SA-AKI mice than in sepsis mice (p < 0.05) 
(Fig.  2a; Additional file  2: Table  S1). Combining with 
GFR, BUN, and creatinine indicated that the SA-AKI 
mice were successfully established [23].

There was a clear change in metabolic activity 
between SA-AKI mice and sepsis mice (Fig.  2b). The 
thirteen renal metabolites with significant changes 
between SA-AKI and sepsis were detailed in Table  1, 
among which eleven are upregulated and two are 
downregulated (q < 0.01, |Log2(FC)|> 1) (Fig.  2d–e; 
Additional file 2: Table S2–3). The differential metab-
olites primarily participate in pathways such as bio-
synthesis of unsaturated fatty acids, linoleic acid 
metabolism, and butanoate metabolism (Fig.  2f ). 
Among them, linoleic acid is a product of linoleic acid 
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Fig. 2  Systematic analysis of metabolic activity differences between SA-AKI and sepsis. a Box plots present the biochemical indicators in SA-AKI 
and sepsis mice, including BUN, creatinine, and GFR. b PCA plot of renal metabolomics. Blue points represent the sepsis group (N = 7), while red 
points represent the SA-AKI group (N = 8). c Differential analysis of renal metabolomics between the two groups. Colors of points correspond 
to q-values. Significant after Benjamini–Hochberg adjusted two-tailed t-test (q < 0.01) and |Log2(Fold Change)|> 1. d Activity distribution of the 11 
upregulated metabolites. e Activity distribution of the 2 downregulated metabolites. Red represents the SA-AKI group and blue represents 
the sepsis group. f Kegg pathway analysis on renal differential metabolites. g Heatmap illustrating the Spearman correlation coefficients 
between the 13 differential metabolites and the three biochemical indicators. Orange represents a positive correlation and light blue represents 
a negative correlation. *, **, and *** indicate q < 0.05, q < 0.01, and q < 0.001, respectively
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metabolism. Zeng et  al. has found that reducing lin-
oleic acid can ameliorate cisplatin-induced AKI [31]. 
In addition, studies have indicated that linoleic acid 
breakdown products are associated with acute respira-
tory distress syndrome and sepsis-related deaths in 
severe COVID-19 patients [32, 33]. Notably, each dif-
ferential metabolite was significantly correlated with 
at least one renal function indicator (q < 0.01) (Fig. 2g), 
suggesting a potential link between changes in renal 
metabolism and renal impairment.

Specifically, 3-hydroxybutyric acid (Log2(FC) = 1.91) 
and creatine (Log2(FC) = 1.42) were significantly 
increased, while inosine was significantly decreased 
in SA-AKI mice (Log2(FC) = − 1.17). In addition, both 
of 3-hydroxybutyric acid and creatine were negatively 
correlated with GFR (R = − 0.80, R = − 0.90) while 
these two metabolites were positively associated with 
BUN (R = 0.73, R = 0.69). Inosine was negatively corre-
lated with BUN (R = − 0.67). These results highlighted 
the important effects of these metabolites in SA-AKI 
mice and revealed potential mechanisms of renal 
injury.

Proteomic and metabolomic network analysis identifies 
core metabolites
The protein expression significantly changed between 
SA-AKI mice and sepsis mice (Fig.  3a). Renal proteins 
significantly dysregulated in SA-AKI mice compared 
with sepsis (q < 0.01, |Log2 (FC)|> 1), with 122 being up-
regulated and 42 down-regulated (Fig.  3b; Additional 
file 3: Table S1). 112 differential proteins associated with 
renal function were detected for further analysis (q < 0.01) 
(Additional file 3: Fig. S1b).

KEGG pathway analysis showed that renal differential 
proteins were mainly involved in inflammatory pathways 
such as NF-kappa B signaling pathway, IL-17 signaling 
pathway, and Toll-like receptor signaling pathway. Acti-
vation of cell death pathways such as adipocytokine sign-
aling pathway, ferroptosis, and apoptosis pathway were 
also found (Fig. 2c). These may be related to the impaired 
mitochondrial function during the occurrence of SA-AKI 
[14, 34]. Gene enrichment analysis found that biologi-
cal process (BP) was mainly enriched in reactive oxygen 
species biosynthetic process, iron ion transmembrane 
transport, macrophage activation, and regulation of lipid 
metabolic process (Additional file 3: Fig. S1c), cell com-
position (CC) was enriched in lipoprotein particle, high-
density lipoprotein particle, lipid droplet (Additional 
file  3: Fig. S1d), molecular functional (MF) process was 
enriched in oxidoreductase activity, acting on metal ions 
and lipid transporter activity (Additional file 3: Fig. S1e). 
Abnormal lipid metabolism can trigger an inflammatory 
response that promotes cell death [35], leading to a poor 
prognosis for AKI [36].

Renal metabolomic and proteomic expressions were 
strongly correlated, for instance, consistent change was 
found between 3-hydroxybutyric acid and Mphosph10 
in our research (cor > 0.99,q < 0.01) (Fig.  3c). 3-Hydroxy-
methylglutaric acid, 3-hydroxybutyric acid, creatine, 
myristic acid, and inosine were considered as core 
metabolites of SA-AKI, with a metabolite-protein con-
nectivity threshold of 50 (Fig. 3d). Significant associations 
(q < 0.01) were found between 32 proteins, 5 core metab-
olites, and renal function indicators, highlighting the 
continuous interaction between multi-omics within the 
SA-AKI renal system (Fig. 3e). The 28 upregulated and 4 

Table 1  Differentially regulated metabolites between SA-AKI 
and sepsis group

Name HMDB IDs Log2FC q-values

Palmitoleic acid HMDB0003229 2.52  < 1e − 04

Eicosenoic acid HMDB0002231 2.36  < 1e − 04

Oleic acid HMDB0000207 2.34  < 1e − 05

Linoleic acid HMDB0000673 2.27  < 1e − 04

MG(0:0/16:0/0:0) HMDB0011533 2.22  < 1e − 03

Androsterone HMDB0000031 2.17  < 1e − 03

3-Hydroxybutyric acid HMDB0000011 1.91  < 1e − 04

MG(16:0/0:0/0:0) HMDB0011564 1.76  < 1e − 02

Myristic acid HMDB0000806 1.66  < 1e − 04

Creatine HMDB0000064 1.42  < 1e − 05

3-Hydroxymethylglutaric acid HMDB0000355 1.04  < 1e − 02

Inosine HMDB0000195  − 1.17  < 1e − 02

Galacturonic acid HMDB0002545  − 1.53  < 1e − 02

(See figure on next page.)
Fig. 3  Integrated analysis of mice renal metabolomic and proteomic data. a PCA plot of renal proteomics. Blue points represent the sepsis 
group (N = 6), while red points represent the SA-AKI group (N = 6). b Differential analysis of renal proteomics between the two groups. Colors 
of points correspond to q-values. Significant after Benjamini–Hochberg adjusted two-tailed t-test (q < 0.01) and |Log2(Fold Change)|> 1. c KEGG 
pathway analysis on renal differential proteins. d Spearman correlation between differential renal proteins and 16 differential renal metabolites. 
Orange represents a positive correlation while light blue represents a negative correlation. e Degree distribution for the differential metabolites, 
among which metabolite-protein degree > 50 were defined as core metabolites. f Sankey diagram depicting the interrelationships between renal 
proteins, core renal metabolites, and biochemical indicators. Red lines represent positive correlation, and light blue lines represent negative 
correlation. Red grid indicates up-regulation and light blue grid indicates down-regulation in SA-AKI mice. g Differential proteins related to the five 
core metabolites
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downregulated proteins may be linked to the function of 
core metabolites, implicated in the regulation of immune 
response (Fig. 3f–g; Additional file 3: Fig. S1c–e).

Five core metabolites, along with 112 differential renal 
proteins and 13 differential renal metabolites, were 
involved in regulating changes in renal function through 

Fig. 3  (See legend on previous page.)
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network analysis (Fig.  4). Core metabolites may play a 
crucial role in the progression of sepsis to SA-AKI, which 
may provide potential strategies for clinical diagnosis.

Serum time series investigation of core metabolites 
in SA‑AKI mice
We performed serum metabolomic analyses of SA-AKI 
mice at three time points (0  h, 8  h, 24  h) to investigate 
the triggering time of the core metabolites (Fig.  5a; 

Additional file  4: Table  S1). The metabolic activities of 
3-hydroxymethylglutaric acid, creatine, and 3-hydroxym-
ethylglutaric acid changed significantly from 0 to 8 h to 
24 h (p < 0.05, ANOVA test), while inosine and myristic 
acid remained stable (p > 0.05, ANOVA test). Specifi-
cally, the metabolic activity of 3-hydroxymethylglutaric 
acid, 3-hydroxybutyric acid, and creatine significantly 
increased from 0 to 24  h and from 8 to 24  h (p < 0.05) 
(Fig.  5b–d). Inosine showed a descent trend from 0 

Fig. 4  Multi-omics network of SA-AKI. Proteins and metabolites correlated to the core metabolites and biochemical indicators are shown 
in the network. Biochemical indicators, core metabolites, and renal proteins are represented by pentagon, hexagon, and circle, respectively. Red 
vertex indicates up-regulation and blue vertex indicates down-regulation between SA-AKI and sepsis groups. Red edge represents a positive 
correlation and blue edge represents a negative correlation between the vertexes
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to 8  h, while it showed an increasing change from 8 to 
24 h (p < 0.05) (Fig. 5e). Myristic acid showed an increas-
ing trend at 0 to 8 h and a decreasing trend at 8 to 24 h 
(Fig. 5f ).

We further explored the dynamic tendency between 
serum core metabolites and blood urea nitrogen (BUN). 

3-Hydroxybutyric acid, creatine, and 3-hydroxymethyl-
glutaric acid demonstrated a positive correlation with 
BUN (3-hydroxybutyric acid: R = 0.68, q < 0.05; cre-
atine: R = 0.92, q < 0.01; 3-hydroxymethylglutaric acid: 
R = 0.66, q < 0.05) (Fig.  5g–i). Furthermore, no signifi-
cant correlations were found between inosine, myristic 
acid, and BUN (Additional file 4: Fig. S1a–b).

Fig. 5  Time series observation of serum metabolites in SA-AKI mice. Changes in serum metabolites in SA-AKI mice at different time points (0H, 
8H, and 24H) (a–f). a, b, c, d, e, and f show the time variation of serum 3-hydroxymethylglutaric acid, 3-hydroxybutyric acid, creatine, inosine, 
and myristic acid, respectively. g–i Scatter plots illustrating the correlation between 3-hydroxybutyric acid, creatine, and BUN. *, p < 0.05; **, p < 0.01
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Construction of IC3 model via targeted quantitative serum 
metabolomics
A clinical study involving 56 patients (28 patients with 
sepsis vs. 28 patients with SA-AKI) was conducted to 
verify the diagnostic efficacy of the IC3 model with a bal-
anced gender ratio (30 were male and 26 were female). 
The 30 male patients consist of 16 patients with SA-AKI 
and 14 patients with sepsis. For the female patients, 12 
patients with SA-AKI and 14 patients with sepsis are 
included (Table  2). We found patients with SA-AKI 
showed increased levels of creatinine, urea, total and 
direct bilirubin, along with higher SOFA and APACHE 
II scores (p < 0.05). They also had significantly lower dias-
tolic blood pressure and reduced platelet counts (p < 0.05) 
(Table 2).

Three core metabolites were completely detected 
among the 56 patients by the targeted quantitative 
metabolomics (Additional file  4: Table  S2). The metab-
olite level of 3-hydroxybutyric acid (Log2(FC) = 3.25, 
p < 0.05) and creatine (Log2(FC) = 0.33, p < 0.05) were 
increased, while the level of inosine was decreased in SA-
AKI (Log2(FC) = − 4.06, p < 0.05) (Fig.  6a). In the male 
patient group, 3-hydroxybutyric acid (Log2(FC) = 3.19, 
p < 0.01) and creatine were significantly increased 
(Log2(FC) = 0.68, p < 0.01) while inosine was significantly 
decreased (Log2(FC) = − 4.64, p < 0.05) in patients with 
SA-AKI (Additional file  4: Fig. S1c–f). In the female 
patient group, 3-hydroxybutyric acid was significantly 
increased (Log2(FC) = 8.77, p < 0.001) while inosine was 
significantly decreased (Log2(FC) = 0.57, p < 0.05), but no 

Table 2  Baseline characteristics of sepsis and SA-AKI patients

HR heart rate, BPM beats per minute, SBP systolic blood pressure, DBP diastolic blood pressure, MAP mean arterial pressure, RR respiration rate, SOFA Sequential Organ 
Failure Assessment, APACHE II Acute Physiological and Chronic Health Assessment, Lac lactic acid, PCT procalcitonin, ALT alanine aminotransferase, AST aspartate 
aminotransferase, TBIL total bilirubin, DBIL direct bilirubin, IBIL indirect bilirubin

Sepsis group
(n = 28)

SA-AKI group
(n = 28)

P value

Age 54 ± 16 50 ± 14 0.388

Sex 0.592

Male 14 (50.0%) 16 (57.1%)

Female 14 (50.0%) 12 (42.9%)

HR (bpm), median, (IQR) 121 (95, 133) 105 (95, 121) 0.475

SBP (mmHg), median, (IQR) 122 (104, 153) 101 (81, 132) 0.054

DBP (mmHg), median, (IQR) 70 (60, 86) 56 (49, 67) 0.011

MAP (mmHg), median, (IQR) 88 (75, 106) 69 (61, 89) 0.029

RR (bpm), median, (IQR) 22 (17, 35) 23 (18, 28) 0.407

Temperature (°C), median, (IQR) 36.50 (36.50, 36.53) 37.05 (36.50, 38.20) 0.012

SOFA, median, (IQR) 7.00 (6.00, 8.00) 9.00 (8.75, 10.00)  < 0.001

APACHE II, median, (IQR) 15.0 (14.0, 16.0) 22.0 (20.0, 24.0)  < 0.001

WBC (10^9/l), median, (IQR) 15 (10, 29) 13 (9, 17) 0.210

Neutrophil (10^9/l), median, (IQR) 14 (9, 28) 12 (7, 15) 0.321

Monocyte (10^9/l), median, (IQR) 0.33 (0.21, 0.49) 0.30 (0.16, 0.36) 0.426

Lymphocyte (10^9/l), median, (IQR) 1.12 (0.88, 1.62) 0.79 (0.57, 0.99) 0.012

Platelet (10^9/l), mean ± SD 261 ± 89 152 ± 123  < 0.001

PH, median, (IQR) 7.26 (7.22, 7.43) 7.36 (7.28, 7.47) 0.059

HCO3− (mmol/L), mean ± SD 20 ± 7 18 ± 6 0.161

Glucose (mmol/L), median, (IQR) 8 (7, 12) 8 (6, 9) 0.192

Lac (mmol/L), median, (IQR) 3.10 (1.80, 5.35) 2.90 (1.30, 4.80) 0.545

PCT (ng/mL), median, (IQR) 22 (2, 36) 33 (24, 46) 0.083

ALT (U/L), median, (IQR) 17 (11, 55) 17 (11, 73)  > 0.999

AST (U/L), median, (IQR) 32 (24, 87) 33 (27, 85) 0.928

Creatinine (μmol/L), median, (IQR) 117 (65, 182) 263 (158, 476)  < 0.001

Urea (mg/dl), median, (IQR) 9 (5, 15) 26 (16, 31)  < 0.001

TBIL (μmol/L), median, (IQR) 17 (7, 23) 40 (22, 84)  < 0.001

DBIL (μmol/L), median, (IQR) 7 (5, 12) 34 (13, 55)  < 0.001

IBIL (μmol/L), median, (IQR) 6 (2, 10) 11 (7, 16) 0.008
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Fig. 6  Construction and Validation of the IC3 Model. a Abundance distribution of serum metabolites between the SA-AKI (N = 28) group 
and the sepsis group (N = 28). (Significant after Wilcoxon univariate testing (p < 0.05)). b Forest plot showing univariate logistic regression results 
of three metabolites. c ROC curves illustrating the three serum metabolites in diagnosing patients with SA-AKI. d Weights of the three serum 
metabolites in the LR model. e The average AUC values for different combinations of three serum metabolites in the diagnosis of SA-AKI via four 
machine learning methods. f Average AUC curve of IC3 model using the three core metabolites. g IC3 nomogram. h Distributions of SOFA 
and APACHE II scores for the high-risk (red) and low-risk (blue) patients, which were stratified by the median of the IC3 score. The distributions 
of the total sample, training set, and test set were separately shown. (Significant after two-tailed t-testing (p < 0.05)). *, **, and *** indicate p < 0.05, 
p < 0.01, and p < 0.001, respectively
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significant change was observed for creatine in patients 
with SA-AKI (Additional file 4: Fig. S1c, Fig. S1g–i). To 
evaluate the effect of three core metabolites on SA-AKI, 
odds ratio (OR) was 2.10 for 3-hydroxybutyric acid 
(p < 0.05), 1.79 for creatine (p > 0.05), and 0.59 for inosine 
(p < 0.05) (Fig.  6b). 3-Hydroxybutyric acid demonstrated 
higher diagnostic accuracy for SA-AKI (AUC = 0.85) 
in comparison to inosine (AUC = 0.73) and creatine 
(AUC = 0.66) (Fig. 6c).

When integrating the three metabolites using the 
logistic regression (LR) model, it exhibits a much higher 
predictive performance (AUC = 0.90) (Fig.  6e–f). The 
average coefficients for 3-hydroxybutyric acid, creatine, 
and inosine were 0.87, 0.92, and − 0.81, respectively 
(Fig.  6d). Moreover, an IC3 nomogram was created for 
a detailed assessment of each sample (Fig.  6g). Samples 
were categorized into high or low score groups based on 
the median score. SOFA and APACHE II scores were sig-
nificantly higher in the high-risk group compared to the 
low-risk group (p < 0.05) (Fig.  6h), demonstrating that 
IC3 is also an indicator for disease severity.

Discussion
By integrating renal metabolomics and proteomics, we 
constructed a multi-omics molecular network of SA-
AKI and identified five core metabolites associated with 
SA-AKI, i.e., 3-hydroxybutyric acid, creatine, inosine, 

3-hydroxymethylglutaric acid and myristic acid. Sub-
sequently, we performed a time series analysis of serum 
from SA-AKI mice to assess the potential of core metab-
olites as biomarkers for the early diagnosis of SA-AKI. 
Eventually, we conducted a SA-AKI diagnostic model, 
IC3, using serum-targeted quantitative metabolomics for 
SA-AKI patients with an AUC of 0.90. The major mol-
ecules associated with SA-AKI are summarized in Fig. 7.

This study employed several cutting-edge technolo-
gies, including GC-TOF–MS, 4D label-free analysis, and 
real-time glomerular filtration rate (GFR) monitoring 
technology, to enable the high-dimension and in-depth 
investigation of SA-AKI. 3-Hydroxybutyric acid, ino-
sine, and creatine were identified as three core metabo-
lites in the early stage of SA-AKI. Previous studies have 
shown that 3-hydroxybutyric acid is one of the ketone 
bodies synthesized by the liver during fasting [37, 38]. In 
patients with sepsis or trauma, an increase in 3-hydroxy-
butyric acid levels was observed [39–41], suggesting that 
these patients may have entered a state of ketosis due to 
insufficient glucose supply in the blood. In addition, the 
activity of inosine is highly consistent with GRF, the same 
conclusion was also found in previous studies [42, 43]. 
For instance, Szabó et al. observed that additional inosine 
supplementation can reduce creatinine and BUN in cecal 
ligation and puncture (CLP) mice [44], which potentially 
ameliorates acute inflammation through modulation of 

Fig. 7  Characterization of core metabolites at multiple omics levels. The main molecular changes of mice renal metabolomics, mice renal 
proteomics, mice plasma metabolomics, mice biochemical indicators, and clinical plasma targeted metabolomics were summarized. Arrows 
represent up- or down-regulation of molecules in the SA-AKI group in comparison to the sepsis group. “ ± ” symbol indicates a positive or negative 
correlation between the core metabolite changes and biochemical indicators
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the TLR4/NF-ΚB signaling pathway [45]. Furthermore, 
urinary creatine levels elevated in several AKI mice mod-
els induced by multiple drugs, such as polymyxin B [46], 
aristolochic acid [47], and gentamicin [48], which may be 
due to oxidative modification of renal mitochondria or 
cellular lysosomal creatine kinase [49, 50]. We observed 
that creatine continued to rise during the progression of 
SA-AKI, and this change affects several metabolic path-
ways, such as arginine and proline metabolism. Although 
creatine changes were not significant in female patients, 
creatine has the potential to be a valuable biomarker for 
renal injury. Drawing upon the possible significance of 
inosine, creatine, and 3-hydroxybutyric acid, this study 
formulated the IC3 model to early prediction of SA-AKI 
in patients with sepsis.

These three metabolites in the IC3 model have been 
separately used in clinic. For example, creatine is a sports 
supplement used to increase muscle strength, but some 
studies have reported that taking creatine may cause 
interstitial nephritis [51]. In addition, inosine supplemen-
tation effectively elevates human serum uric acid levels 
without compromising renal function [52–54]. However, 
these three core metabolites have not yet been utilized in 
the early screening and diagnosis of SA-AKI. We noted 
that early detection of 3-hydroxybutyric acid, creatine, 
and inosine in patients with sepsis can predict the occur-
rence of SA-AKI, and further found that the nomogram 
constructed via the IC3 model was positively correlated 
with APACHE II and SOFA scores. IC3 model is instru-
mental in the early identification of high-risk individuals 
among patients with sepsis who are potentially suscep-
tible to developing SA-AKI, which can also serve as a 
guiding tool to assist medical care providers in offering 
early intervention [55]. Moreover, for SA-AKI patients 
with higher IC3 scores, early initiation of treatment such 
as renal replacement therapy (RRT) can be considered to 
avoid persistent renal damage and reduce mortality [56, 
57].

Current researches on SA-AKI lack temporal sensitiv-
ity [57]. To this end, we performed a time series analy-
sis of metabolites to determine the optimal time point 
for diagnosing SA-AKI. Because of the delay between 
increased creatinine concentration and the occurrence 
of AKI, interventions for AKI typically are initiated dur-
ing the maintenance phase of renal injury [58]. Early 
screening for SA-AKI can be conducted within the first 
24 h to promptly identify high-risk individuals, mitigate 
nephrotoxic drug use, and adjust dosages according to 
renal function; Simultaneous injecting vasoactive drugs 
to maintain mean arterial pressure at least 65 mmHg [59] 
to prevent irreversible structural renal damage. Moreo-
ver, in contrast to mice metabolomics or proteomics 
studies [13, 14], our work innovatively integrated three 

different omics including mice renal metabolomics, renal 
proteomics, serum time series metabolomics, and popu-
lation-targeted quantitative metabolomics to identify SA-
AKI biomarkers. This multidimensional strategy greatly 
enhances the precision with identified biomarkers and 
allows us to track the dynamic change of these metabo-
lites during the development of SA-AKI.

LPS (i.p.) is a classic sepsis mice model [60, 61]. 
Inflammatory pathways are activated, accompanied by 
increased mitochondrial dysfunction and disrupted 
energy metabolism, which further triggers metabolic 
reprogramming and programmed cell death in target 
organs, such as renal [62, 63]. This series of pathophysi-
ological processes eventually led to the occurrence of 
AKI. Peng et al. found that SAP130 protein released after 
iron death activation can induce macrophage polariza-
tion, which further exacerbates the damage of the renal 
tubular [64]. On the other hand, previous studies used to 
apply serum creatinine, urea nitrogen, and renal patho-
logic score to determine whether sepsis mice were com-
plicated with AKI [65–67]. On top of that, we combined 
GFR technology to successfully construct an early and 
stable LPS-induced SA-AKI model and double-verified 
it by molecular markers such as NGAL [23]. Therefore, 
we continued to use this technique to ensure the stability 
and reliability of the SA-AKI mice model.

Study limitations include the small clinical sample size 
and the single-center nature of participant recruitment, 
the potential confounders in the construction of IC3, 
such as medication usage, dietary habits, and lifestyle fac-
tors, only male mice were used in the experiments, and 
the lack of molecular mechanisms underlying these met-
abolic variations. Consistent with previous studies that 
utilized male mice [68, 69], these animals exhibit minimal 
individual variation and greater stability across body size, 
metabolic rate, and behavioral physiological responses. 
On the other hand, female mice experience fluctuations 
in estrogens and other hormones [70], which have the 
potential to interfere with metabolic processes and con-
sequently influence the experimental data interpretabil-
ity. Although only 56 samples were used in this study for 
model construction, we demonstrated the reliability of 
our model with multiple experimental designs, including 
reliable SA-AKI mice models, multi-omics of renal tis-
sue, and serum time series metabolomics. On top of that, 
we are planning to expand the collection of more diverse 
clinical samples and conduct multi-center studies to keep 
updating the current model.

Conclusions
Through renal multi-omics network analyses and serum 
time series studies in SA-AKI mice, core metabo-
lites were identified as potential SA-AKI diagnostic 
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biomarkers. Serum quantitative metabolomic analysis of 
a clinical cohort was performed to develop a metabolite-
based diagnostic model, IC3, enabling the early detection 
of SA-AKI. The current results are only preliminary find-
ings, and prospective validation in a more diverse clinical 
population is needed to verify the accuracy and reliability 
of the IC3 model.
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