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Abstract 

Background  Tumor heterogeneity and clonal evolution are related to the treatment resistance and disease progres-
sion in metastatic breast cancer (MBC). However, the process of clonal evolution and their relationship to prognosis 
remain unclear. This study aimed to elucidate the evolution of MBC through circulating tumor DNA (ctDNA) analysis 
and to develop a novel indicator for predicting treatment efficacy and prognosis.

Methods  This multicenter retrospective study enrolled MBC patients who underwent next-generation sequenc-
ing between April 2016 and October 2022. The clonal evolution of tumors was inferred using PyClone and CITUP 
software.

Results  The study included 406 MBC patients. A cohort of 139 patients from the National Cancer Center served 
as the training cohort, while 267 patients from other centers comprised the validation cohort. In the training cohort, 
clonal analysis revealed that most MBCs exhibited branched clonal evolution, while a minority showed linear evolu-
tion. The branched evolution pattern was associated with slower disease progression (HR, 0.53; 95% CI, 0.32–0.87; 
P = 0.012). We introduced tumor clonal evolution rate (TER) as a novel concept to reflect the speed of clonal evolution. 
Survival analysis demonstrated that compared to the TER-high group, patients in the TER-low group had better pro-
gression-free survival (PFS) (HR, 0.62; 95% CI, 0.40–0.96; P = 0.033) and overall survival (OS) (HR, 0.45; 95% CI, 0.24–0.85; 
P = 0.013). Similarly, in the validation cohort, although the median OS was not reached, patients in the TER-low group 
had better prognosis compared to those in the TER-high group (HR, 0.41; 95% CI, 0.21–0.83; P < 0.001).

Conclusions  Patients with branched evolution have better treatment efficacy than those with linear evolution. 
The TER shows potential as a biomarker for treatment efficacy and prognosis, providing new evidence that ctDNA 
is a valuable molecular indicator for predicting treatment outcomes in metastatic breast cancer.
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Background
Breast cancer is the most common malignant tumor 
affecting women’s health, with approximately 2.3 mil-
lion new cases worldwide in 2020 [1]. Recurrence and 
metastasis may occur in 20–30% of breast cancer patients 
after initial diagnosis or adjuvant therapy and account 
for approximately 90% of breast cancer-related deaths 
[2]. The 5-year survival rate for patients with metastatic 
breast cancer is only approximately 25% [3]. The dynamic 
evolution of tumor biology and the heterogeneity within 
and among tumors pose significant challenges in breast 
cancer treatment. Therefore, assessing tumor heteroge-
neity holds crucial clinical value for diagnosis, prognosis 
evaluation, and treatment monitoring.

Previous studies suggest that a single diagnostic tis-
sue biopsy may not provide an accurate and compre-
hensive representation of the dynamic evolutionary 
characteristics of tumors. Multifocal and repeat biopsies 
can significantly enhance our understanding of tumor 
heterogeneity. However, the increased risk of complica-
tions and invasiveness associated with these procedures 
limits their widespread clinical application [4]. In the 
rapidly advancing field of genomics, circulating tumor 
DNA (ctDNA) has emerged as a blood-based biomarker 
analysis method, overcoming the limitations of tradi-
tional histological biopsies. ctDNA has the advantages 
of being less invasive and allowing for real-time and 
dynamic monitoring of tumor heterogeneity [5, 6]. Pre-
vious research suggests that ctDNA can detect tumor 
progression earlier than imaging examination [7] and 
cancer antigen 15–3 (CA15-3)[8], making it valuable for 
early tumor diagnosis. Additionally, it can serve as an 
indicator to assess the effectiveness of anti-tumor treat-
ments in patients with recurrent and metastatic cancer 
[9–11]. Examining the mutation spectrum and frequency 
in ctDNA provides insight into the origin, evolutionary 
trajectory, and clonal composition of tumor cells. As 
ctDNA carries information about tumor cell mutations, 
this analysis provides valuable insights into the complex 
characteristics of tumor cells [6].

Current ctDNA research in breast cancer focuses on 
detection of early recurrence, identification of minimal 
residual disease (MRD), and evaluation of treatment 
response [12–15]. However, a comprehensive under-
standing of clonal structural changes during the pro-
gression of metastatic breast cancer is still incomplete. 
Therefore, second-generation sequencing technology was 
used in this study to identify ctDNA in various periph-
eral blood samples from patients. Our objective was 
to unveil the evolutionary process of tumors through a 
comparative analysis of genomic changes before and after 
treatment in individuals with metastatic breast cancer. 
Additionally, based on the changes in clonal evolution 

rate during the progression of breast cancer, we propose 
a novel indicator for determining the rate of clonal tumor 
evolution and explore its value in predicting antitumor 
treatment efficacy and prognosis.

Methods
Patients collection
We designed this retrospective, multicenter study to 
explore the clonal evolution of metastatic breast cancer 
through ctDNA analysis. The primary cohort included 
patients diagnosed with metastatic breast cancer who 
received treatment at the National Cancer Center/
National Clinical Research Center for Cancer/Cancer 
Hospital, Chinese Academy of Medical Sciences, and 
Peking Union Medical College between April 25, 2016, 
and May 31, 2021, and who voluntarily participated in 
biomarker research. Patients in the validation cohort 
were recruited from Geneplus Medical Laboratory (Bei-
jing, China) between April 25, 2016, and October 31, 
2022.

The study included patients who met the following 
criteria: [1] diagnosis of distant metastatic breast cancer 
confirmed by cytological or histological examination at 
the aforementioned center; (2) peripheral blood speci-
mens sufficient for at least two ctDNA tests; (3) complete 
clinical and pathological data, (4) voluntary informed 
consent for participation in the study. The exclusion cri-
teria were as follows: (1) incomplete clinical or patho-
logical data, (2) patients with locally advanced breast 
cancer undergoing neoadjuvant therapy, and (3) a lack 
of recurrence or metastasis after breast cancer surgery. 
The clinical and pathological data of each patient, along 
with relevant information about the anticancer treat-
ments given after ctDNA testing, were meticulously doc-
umented. Ethical approval was obtained from the Ethics 
Review Committee of the Cancer Hospital of the Chinese 
Academy of Medical Sciences before commencing the 
study. In addition, all participating patients provided vol-
untary consent by signing informed consent forms. The 
patient enrollment flowchart is shown in Fig. 1A.

To evaluate the response to treatment, computed 
tomography (CT) scans were performed after every two 
treatment cycles or when signs or symptoms indicat-
ing disease progression were observed, following the 
Response Evaluation Criteria in Solid Tumors (RECIST) 
1.1 guidelines.

Samples collection and plasma ctDNA testing
Peripheral blood (10 mL) was collected from each patient 
into Streck tubes (Streck, Omaha, NE, USA). The samples 
were centrifuged within 72 h to separate plasma from 
blood cells. Circulating DNA was then extracted from 
the plasma using the QIAamp Circulating Nucleic Acid 
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Fig. 1  Patients enrollment flowchart and treatment timeline diagram. A Patients enrollment flowchart. B ctDNA testing and treatment swimmer 
plots
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Kit (Qiagen) and further purified with the DNeasy Blood 
and Tissue Kit. The size distribution of the cell-free DNA 
(cfDNA) was analyzed using an Agilent 2100 Bioanalyzer 
with the DNA HS Kit (Agilent Technologies, Santa Clara, 
CA, USA). Samples with a total DNA amount greater 
than 1 µg and without obvious degradation were consid-
ered qualified and were subjected to 1021 gene sequenc-
ing [16, 17] (Additional file 1).

Visualization of clonal evolution
PyClone was used to infer the clonal composition of 
patients[18]. For each patient, all genome sequencing 
samples collected at different time points were jointly 
used as input for PyClone. We used PyClone (v.0.13.1) 
with a beta-binomial emission density. PyClone was 
run with 10,000 iterations and a burn-in of 1000. The 
following default settings were applied for the remain-
ing parameters: base measure parameters: alpha = 1 and 
beta = 1; concentration parameters: initial value = 1, prior 
shape = 1, and prior rate = 0.001; and beta-binomial pre-
cision parameters: initial value = 1000, prior shape = 1, 
prior rate = 0.001, and proposal precision = 0.01.

To reconstruct the clonal phylogenetic trees of patients, 
we utilized CITUP[19]. The output from PyClone, which 
includes the clonal assignment and cancer cell fraction 
(CCF) for each mutation, served as the input for CITUP. 
We employed the QIP version of CITUP with the follow-
ing default parameters: min nodes = 1, max nodes = 8. 
Then, we employed the R package Timescape (https://​
github.​com/​shahc​ompbio/​times​cape) to visualize the 
output of CITUP, which represents the clonal evolution 
tree of the patient.

Definition of the TER
In tumor heterogeneity analysis, allele frequencies are 
commonly used to reflect the clonal composition of 
tumors. The variant allele frequency (VAF) of a mutation 
is defined as the number of mutant molecules divided 
by the total number of molecules containing the corre-
sponding allele. Mutations with higher allele frequen-
cies typically represent major clones, while those with 
low allele frequencies are likely to represent subclones. 
Our inference of the tumor phylogenetic tree for patients 
revealed that major clones tend to have a dominant posi-
tion in the changing landscape under treatment and 
natural selection. To reflect the clonal evolution speed of 
tumors over time, considering the distribution between 
major and subclones, we innovatively introduced the 
tumor clonal evolution rate (TER) of a patient, defined as 
TER = (AFmax2/U2 − AFmax1/U1)/t.

U is the arithmetic mean of allele frequencies (AF) for 
all somatic mutations, while AFmax is the maximum 
allele frequency for somatic mutations. AFmax1 and U1 

are indicators at the first detection time point T1, while 
AFmax2 and U2 are indicators at the second detection 
time point T2. t is the time interval between the two 
detection points, which is T2 − T1, measured in days. In 
our analysis, the patient’s first and second ctDNA detec-
tion time points are T1 and T2, respectively.

AFmax/U is a normalized indicator whose value is not 
affected by tumor cell purity. When a patient has only 
one clone (i.e., all somatic mutations have similar allele 
frequencies), AFmax/U will be close to the minimum 
value of 1. Conversely, when a patient has multiple clones 
(i.e., there are significant differences in allele frequen-
cies among somatic mutations), AFmax/U will be signifi-
cantly greater than 1, and the value will be larger with the 
presence of more subclones (i.e., more mutations with 
relatively low allele frequencies). Therefore, the value 
of AFmax/U can reflect the tumor heterogeneity of the 
patient. TER characterizes the development speed of the 
patient’s tumor heterogeneity.

Statistical analysis
Progression-free survival (PFS) was defined as the dura-
tion from the initiation of a new anticancer treatment 
regimen following the last ctDNA test to the date of 
disease progression or death. Overall survival (OS) was 
defined as the duration from the initiation of a new anti-
cancer treatment regimen following the last ctDNA test 
to the date of death from any cause. Data for patients 
who were not followed up until the endpoint event (dis-
ease progression or death) were censored, and the date 
of the last follow-up was recorded. The latest follow-up 
was conducted in August 2022. All the statistical analyses 
were conducted using SPSS 22.0 (IBM Corp., New York, 
USA), GraphPad Prism 8.0 (GraphPad Software, La Jolla, 
CA, USA), R (v4.0.4), and R Studio (v1.4.1717). Descrip-
tive statistics were utilized to summarize the clinical 
and pathological characteristics of the patients. The chi-
square test or Fisher’s exact test was used when compar-
ing categorical variables. The survminer R package was 
used to identify the optimal threshold for TER according 
to OS. Survival curves were plotted using the Kaplan–
Meier method, and differences in PFS and OS between 
treatment groups were compared using the log-rank test. 
Cox regression analysis was performed to compare the 
relationships between various clinical characteristics and 
PFS and OS. P < 0.05 was considered to indicate statistical 
significance.

Results
Patient characteristics and sample information
This study training cohort included 139 female patients 
with metastatic breast cancer. The median age was 
45  years, ranging from 27 to 68  years. Among these 

https://github.com/shahcompbio/timescape
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patients, 92.1% (128/139) had invasive ductal carcinoma, 
4.3% (6/139) had invasive lobular carcinoma, and 3.6% 
(5/139) had other pathological types. There were 108 
(77.7%) hormone receptor (HR)-positive patients and 
31 (22.3%) HR-negative patients. Additionally, 28.1% 
(39/139) of patients were human epidermal growth factor 
receptor 2 (HER2)-positive, while 71.9% (100/139) were 
HER2-negative. Further baseline characteristics of the 
patients were detailed in Table 1.

ctDNA detection and dynamic mutation spectrum
Among the 139 patients, 103 underwent two rounds of 
ctDNA testing, 32 underwent three rounds, and 4 under-
went four rounds. ctDNA testing and treatment swim-
mer plots were shown in Fig. 1B. ctDNA were detected 
in the baseline samples of 129 (92.8%) out of 139 patients. 
Genomic data were collected from ctDNA tests at two 
time points: baseline (T1) and after disease progression 
following treatment regimens (T2). At T1, ctDNA muta-
tions were detected in 109 patients (84.5%) (Additional 
file  2: Fig. S1A). The most frequently mutated genes at 

T1 were TP53 (42.6%), PIK3CA (41.9%), ERBB2 (17.1%), 
ESR1 (14.0%), and MLL3 (13.2%), consistent with previ-
ous studies. We observed that 76.9% of triple-negative 
breast cancer (TNBC) harbor TP53 mutations, while the 
mutation frequencies in HER2-positive patients and HR-
positive patients were 44.4% and 36.3%, respectively. The 
frequencies of PIK3CA mutations were 42.5% in HR-pos-
itive patients, 41.7% in HER2-positive patients, and 38.5% 
in TNBC patients, respectively. All 18 patients (18.2%) 
with ESR1 mutations were found among HR-positive 
patients who had received prior endocrine therapy before 
baseline ctDNA testing. At T2, the frequency of ctDNA 
mutations increased to 89.9%. The top mutated genes at 
T2 were TP53 (48.8%), PIK3CA (44.2%), ERBB2 (18.6%), 
ESR1 (14.7%), and GATA3 (14.7%) (Additional file 2: Fig. 
S1B). Comparison of mutation frequencies at T1 and 
T2 revealed that while the top four genes remained the 
same, their mutation frequencies increased at T2 (Addi-
tional file 2: Fig. S2).

Analysis of clonal evolution
Clonal structure analysis of ctDNA samples collected 
at different times revealed distinct evolutionary pat-
terns. Patient P1 exhibited a “linear” evolution pattern, 
where all progeny clones derived from a single progeni-
tor clone evolved sequentially to form new clones with 
survival advantages (Fig. 2A). In contrast, patient P2 dis-
played a "branched" evolution pattern, where two distinct 
branching clones emerged from the progenitor clone 
and evolved independently into new subclones due to 
antitumor treatment and external selection (Fig.  2B). In 
other words, a linear evolution pattern is characterized 
by each node in the clonal evolution tree having only one 
child clone, indicating a straightforward and unbranched 
development. Conversely, a branched evolution pat-
tern is indicated by a node with at least two child clones, 
signifying multiple branches in clonal development. In 
this study, 40 patients (31.0%) exhibited linear evolution 
patterns, while 89 patients (69.0%) exhibited branched 
evolution patterns. These findings suggest that most 
breast cancer patients undergo branched evolution after 
multiple lines of treatment for recurrence and metasta-
sis under antitumor treatment and external selection. 
Specifically, branched evolution was more common in 
HR-positive patients and HER2-positive breast cancers, 
whereas linear evolution was more common in triple-
negative breast cancer (Table 2).

Relationships between clonal evolution patterns 
and treatment efficacy and prognosis
An analysis was conducted on 86 patients for whom 
PFS data were available after the second ctDNA test. Of 
these, 22 received chemotherapy, 7 received endocrine 

Table 1  The baseline characteristics of patients

Abbreviations: HR hormone receptor positive, HER2 human epidermal growth 
factor receptor 2
a The number of breast cancer patients

Characteristics No. (n = 139)a Percentage (%)

Age at diagnosis

    ≤ 35 14 10.1

    35–60 115 82.7

     > 60 10 7.2

Pathological type

   Invasive ductal carcinoma 128 92.1

   Invasive lobular carcinoma 6 4.3

   Others 5 3.6

HR status

    Positive 108 77.7

   Negative 31 22.3

HER2 status

   Positive 39 28.1

   Negative 100 71.9

Molecular subtype

   HR + /HER2 −  87 62.6

   HER2 +  39 28.0

   HR − /HER2 −  13 9.4

Visceral metastases

   Yes 121 87.1

   No 18 12.9

Number of metastatic sites

   1 17 12.2

   2–3 70 50.4

   ≥ 4 52 37.4
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therapy, 34 received chemotherapy combined with tar-
geted therapy, 18 received endocrine therapy combined 
with targeted therapy, and 5 received other treatments 
(such as targeted therapy or radiotherapy). Among these 
patients, 24 exhibited linear evolution, while 62 exhib-
ited branched evolution. Patients with branched evo-
lution had a median PFS of 4.0  months compared to 
2.2 months for those with linear evolution (hazard ratio 
(HR), 0.52; 95% confidence interval (CI), 0.30–0.91; 
P = 0.004) (Fig. 3A). Next, we conducted further analysis 
on patients received chemotherapy and other treatments 
after the second ctDNA test. Among the 56 patients 
treated with chemotherapy, 17 exhibited linear evolution, 
while 39 exhibited branched evolution. Similarly, patients 
with branched evolution exhibited better prognosis, 
with median PFS extended by 2.3  months compared 
to those with linear evolution (HR, 0.48; 95% CI, 0.23–
0.95; P = 0.006). Among the remaining 30 patients who 
received other treatments, 7 exhibited linear evolution, 

while 23 exhibited branched evolution. The median PFS 
for patients with branched and linear evolution patterns 
were 3.4  months and 2.3  months, respectively. How-
ever, the difference was not statistically significant (HR, 
0.74; 95% CI, 0.29–1.87; P = 0.490) (Additional file 2: Fig. 
S3A–B).

To adjust for clinical factors, we included molecular 
subtype (P = 0.010) and clonal evolution patterns in the 
Cox regression model. Results indicated that patients 
with branched evolution had a lower likelihood of disease 
progression (HR, 0.53; 95% CI, 0.32–0.87; P = 0.012). For 
OS in 129 patients, those with linear evolution patterns 
had a median OS of 56.3  months. The survival data for 
patients with branched evolution were not yet mature, 
but a trend towards better prognosis was observed in 
these patients compared to those with linear evolu-
tion (HR, 0.55; 95% CI, 0.28–1.09; P = 0.052) (Fig.  3B). 
Cox regression analysis for OS included molecular sub-
type (P = 0.496), number of metastatic sites (P = 0.001) 
and clonal evolution patterns. The results showed that 
patients with less metastases had a better OS (HR, 0.38; 
95% CI, 0.22–0.64; P < 0.001), and the evolution pattern 
was not significantly related to OS.

The role of TP53 and PIK3CA in tumor heterogeneity
We analyzed the roles of the two most frequently 
mutated genes, TP53 and PIK3CA, in tumor heteroge-
neity. Trunk-resistant mutations refer to gene mutations 
that occur in clones at the early stage of tumor formation, 
while nontrunk-resistant mutations are those that appear 

Fig. 2  Tumor clonal evolution patterns. A Linear evolution. B Branched evolution

Table 2  Evolutionary patterns in different molecular subtypes of 
breast cancer patients

Abbreviations: HR hormone receptor, HER2 human epidermal growth factor 
receptor 2

Tumor evolutionary pattern Molecular subtype/number of cases 
(%)

HR + /HER2 −  HER2 +  HR − /HER2 − 

Linear evolution 24 (30.0) 8 (22.2) 8 (61.5)

Branched evolution 56 (70.0) 28 (77.8) 5 (38.5)
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Fig. 3  Survival analysis based on the clonal evolution patterns. A PFS analysis between patients with linear and branched evolution. B OS analysis 
between patients with linear and branched evolution
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in clones during tumor evolution. We analyzed the PFS 
data of 86 patients after the second ctDNA test. Twenty 
patients carried TP53 trunk-resistant mutations, while 31 
patients carried PIK3CA trunk-resistant mutations. The 
median PFS for patients with TP53 trunk-resistant muta-
tions was 3.3 months compared to 3.4 months for those 
without trunk-resistant mutations (HR, 1.09; 95% CI, 
0.65–1.83; P = 0.722) (Additional file 2: Fig. S4A). Patients 
with PIK3CA trunk-resistant mutations had a median 
PFS of 2.5  months, compared to 4.0  months for those 
without these mutations, indicating a trend towards 
more aggressive tumor progression, though not statisti-
cally significant (HR, 1.48; 95% CI, 0.92–2.38; P = 0.076) 
(Additional file 2: Fig. S4B).

Survival analysis of 46 patients with available OS data 
revealed that 13 patients carried TP53 trunk-resistant 
mutations, and 15 patients carried PIK3CA trunk-resist-
ant mutations. Patients with TP53 trunk-resistant muta-
tions had a median OS of 11.6  months, compared to 
16.3 months for those without these mutations (HR, 1.59; 
95% CI, 0.77–3.28; P = 0.144) (Additional file 2: Fig. S4C). 
For patients with PIK3CA trunk-resistant mutations, the 
median OS was 16.3 months, compared to 11.6 months 
for those without these mutations (HR, 1.08; 95% CI, 
0.58–1.96; P = 0.823) (Additional file 2: Fig. S4D).

TER as a predictor of treatment efficacy and prognosis 
in the primary cohort
Using the bootstrap resampling method, we identified 
the optimal threshold values for the TER corresponding 
to OS and found that the optimal threshold value for the 
TER was 14.15*10−4 in the primary cohort. An analysis of 
the clinical and pathological factors influencing the TER 
revealed that the TER was not significantly correlated 
with age at diagnosis, pathological type, hormone recep-
tor status, HER2 status, molecular subtype, the presence 
of visceral metastasis, or the number of metastatic organs 
(P > 0.05) (Additional file 3).

Survival analysis revealed that the median PFS in the 
low TER (TER-L) group was longer than that in the high 
TER (TER-H) group for the next treatment regimen 
(4.3 months vs. 2.8 months, (HR, 0.64; 95% CI, 0.41–0.98; 
P = 0.031)) (Fig.  4A). The analysis of PFS indicated that 
HR-positive patients and HER2-positive patients had 
better PFS than TNBC patients (P = 0.004). Including 
TER, molecular subtype, number of metastatic organs 
(P = 0.604), and next-line treatment regimen (P = 0.838) 
in the Cox regression model, we found that TER was an 
influencing factor for PFS, with TER-L status associated 
with better PFS (HR, 0.62; 95% CI, 0.40–0.96; P = 0.033) 
(Table 3).

Further exploration of the optimal treatment strategies 
for TER-L and TER-H patients is needed. In the TER-L 

group, the median PFS for patients receiving chemother-
apy with or without targeted therapy and those receiving 
endocrine therapy with or without targeted therapy were 
4.2 months and 5.9 months, respectively (HR, 1.05; 95% 
CI, 0.54–2.04; P = 0.930) (Additional file 2: Fig. S5A). In 
the TER-H group, no statistically significant difference 
was observed in median PFS between the two treatment 
modalities (both 2.8  months; (HR, 0.90; 95% CI, 0.45–
1.81; P = 0.760)) (Additional file 2: Fig. S5B).

Analysis of 46 patients’ mortality events showed that 
the median OS for the TER-L group was 21.4  months 
compared to 11.5 months for the TER-H group, indicat-
ing significantly longer OS in the TER-L group (HR, 0.49; 
95% CI, 0.27–0.88; P = 0.009; Fig.  4B). Univariate analy-
sis of OS did not include visceral metastasis due to only 
one patient without visceral metastasis. Age (P = 0.299), 
molecular subtype (P = 0.202), and number of metastatic 
organs (P = 0.641) did not significantly differ between 
groups. Including the number of metastatic organs and 
molecular subtype in the Cox regression model, we found 
that TER was an influencing factor for OS, with the 
TER-L group having a better prognosis (HR, 0.45; 95% 
CI, 0.24–0.85; P = 0.013) (Table 4).

Validation of the predictive performance of TER and clonal 
evolution patterns
To validate the predictive value of the TER, we expanded 
the sample size and collected data from 267 metastatic 
breast cancer patients (median age at diagnosis, 40 years 
(range, 24–74  years)) from multiple hospitals nation-
wide. The validation cohort consisted of 58 patients in 
the TER-H subgroup and 209 patients in the TER-L 
subgroup. Although the median OS was not reached in 
either group, patients in the TER-L group had a signifi-
cantly better prognosis than those in the TER-H group 
(HR, 0.41; 95% CI, 0.21–0.83; P < 0.001). These results 
demonstrate that the TER has good prognostic efficacy 
(Fig. 5A). In addition, we also validated the relationship 
between evolution patterns and OS in the validation 
cohort and found that no association between clonal evo-
lution patterns and survival (P = 0.970; Fig. 5B).

Discussion
Recent advances in early diagnosis and targeted therapy 
development have significantly improved the diagnosis 
and treatment of breast cancer [20]. However, patients 
with metastatic breast cancer still face a high risk of 
mortality [21]. Previous research has shown that tumor 
heterogeneity and clonal evolution are associated with 
treatment resistance and disease progression in meta-
static breast cancer [22]. Despite this, there is limited 
research on genomic dynamics and clonal structural 
changes in these patients. Given the high heterogeneity 
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Fig. 4  Survival analysis based on the TER in the training cohort. A PFS analysis based on the TER in the training cohort. B OS analysis based 
on the TER in the training cohort
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of breast cancer, the molecular subtypes and genetic 
mutation characteristics in metastatic lesions may dif-
fer significantly from those in the primary tumor [23]. 
Therefore, repeat biopsies of metastatic lesions are clini-
cally significant for understanding changes in molecu-
lar subtypes following recurrence and metastasis [24, 
25]. However, obtaining tumor tissue from metastatic 
lesions can be challenging and invasive, with high risks. 
Moreover, a single tissue biopsy may not capture all 
biological characteristics due to the spatial heterogene-
ity of tumors. ctDNA, shed from circulating tumor cells 
into the peripheral blood, provides real-time, dynamic 
information on tumor heterogeneity and overcomes the 
limitations of traditional biopsies. This approach has 
advantages such as minimally invasive sampling and eas-
ier accessibility [5, 6]. Previous studies have shown that 
peripheral blood ctDNA has gene sequences that are 
highly similar to those of paired tumor tissues. This simi-
larity enables the inference of tumor cell clonal structures 
through the analysis of mutation spectra and frequencies 
in ctDNA [6, 26, 27].

This study included patients with metastatic breast 
cancer who had undergone multiple treatments. Blood 
samples from various time points were subjected to 
ctDNA sequencing targeting 1021 genes. In the pri-
mary cohort, ctDNA mutations were detected in 84.5% 
of patients at baseline, which is consistent with previ-
ous reports [28]. In the second ctDNA sequencing, the 

detection rate of ctDNA mutations increased to 89.2%, 
suggesting an increase in tumor burden with disease 
progression. Analysis of the results from the two ctDNA 
tests revealed TP53, PIK3CA, ERBB2, and ESR1 as the 
top four genes according to mutation frequency. Muta-
tion frequencies were greater in the second sample than 
in the first, which is consistent with data on commonly 
reported genes associated with breast cancer recurrence 
and metastasis [17].

Multiomic sequencing has revealed key aspects of can-
cer evolution in a variety of solid cancers [6, 29–31]. In 
our study, PyClone and CITUP software were used to 
analyze tumor-associated gene mutations and determine 
the process of tumor clonal evolution. Most patients 
exhibited adaptive alterations under the pressure of a 
series of anticancer treatments, resulting in new muta-
tional subclones and a branched clonal evolutionary pat-
tern. A minority of patients exhibited linear evolution. 
Similar features were observed in patients with postop-
erative glioma recurrence, where a significant increase in 
new mutations was observed following tumor recurrence 
and metastasis compared to the primary lesion, present-
ing a branched clone evolutionary pattern [32]. Fur-
thermore, we found that patients with linear evolution 
patterns were more prone to disease progression during 
treatment. This result was also observed in the chemo-
therapy-treated subgroup, where patients with branched 
evolution had a median PFS 2.3 months longer than 

Table 3  Cox regression analyses between PFS and clinical characteristics (n = 86)

Abbreviations: HR hormone receptor, HER2 human epidermal growth factor receptor 2, TNBC triple-negative breast cancer, TER tumor clonal evolution rate, 
CI confidence interval

Variables Univariate analysis Multivariable analysis

hazard ratio (95% CI) P hazard ratio (95% CI) P

TER Low vs. high 0.64 (0.41–0.98) 0.031 0.62 (0.40–0.96) 0.033

Molecular subtype  TNBC vs. HR + and HER2 +  3.82 (0.71–20.7) 0.004 - -

Number of metastatic organs   ≥ 4 vs. 2–3 and 1 1.24 (0.78–1.95) 0.604 - -

Next-line treatment regimen Chemotherapy vs. other 
regimens

1.05 (0.67–1.65) 0.838 - -

Table 4  Cox regression analyses between OS and clinical characteristics (n = 46)

Abbreviations: HR hormone receptor, HER2 human epidermal growth factor receptor 2, TNBC triple-negative breast cancer, TER tumor clonal evolution rate, 
CI confidence interval

Variables Univariate analysis Multivariable analysis

Hazard ratio (95% CI) P Hazard ratio (95% CI) P

TER Low vs. high 0.49 (0.27–0.88) 0.009 0.45 (0.24–0.85) 0.013

Molecular subtype TNBC vs. 
HR + and HER2 + 

2.41 (0.53–10.96) 0.202 1.21 (0.89–1.64) 0.232

Number of metastatic organs ≥ 4 
vs. 2–3, 1

1.15 (0.63–2.06) 0.641 1.14 (0.66–1.97) 0.628
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Fig. 5  OS analysis based on the TER and clonal evolution patterns in the validation cohort. A OS analysis between TER-H and TER-L in validation 
patients. B OS analysis between patients with linear and branched evolution in the validation cohort
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those with linear evolution. However, among patients 
receiving other treatments, we observed that those with 
branched evolution had a median PFS of 1.1 months 
longer than those with linear evolution, although this dif-
ference was not statistically significant. We speculate that 
the reason for this result may be related to the smaller 
sample size of patients in the subgroup. Most HR-posi-
tive patients and HER2-positive breast cancer patients 
exhibited branched evolution, while most TNBC patients 
demonstrated linear evolution, which was consistent 
with the poor prognosis associated with TNBC. Possible 
reasons include that in linear evolutionary models, some 
primary-driven tumor-associated genes play an active 
role in inducing treatment resistance. But among clear 
cell renal cell carcinoma patients, those with branching 
evolution were more aggressive than those with linear 
evolution [30]. This difference may be related to intertu-
mor heterogeneity.

Our study revealed that monitoring the dynamic 
changes in the clonal evolution of tumors in patients 
can reflect the effectiveness of anticancer treatments. 
We introduce TER as a novel concept that integrates the 
clonal evolution characteristics detected between two 
ctDNA tests, along with the impact of both the primary 
clone and the subclones generated under treatment pres-
sure on therapy. Compared to clonal evolution patterns, 
the TER reflects the dynamic evolution speed of tumor 
clones. We determined the optimal threshold for divid-
ing patients into TER-L and TER-H groups and found 
that patients in the TER-L group had better median PFS 
and OS than those in the TER-H group. This suggests 
that patients with slower clonal evolution experienced 
longer PFS and OS with subsequent lines of anticancer 
treatment. Validation with a larger cohort from multi-
ple centers confirmed that patients in the TER-L group 
had a better prognosis, indicating that TER could serve 
as a biomarker for predicting treatment efficacy and 
prognosis.

Previous studies have frequently utilized the tumor 
mutational burden (TMB) to reflect the instability and 
mutation load of tumors. Currently, the TMB is utilized 
as a biomarker for predicting the response to immune 
checkpoint inhibitor therapy. However, the role of the 
TMB in the prediction of prognosis remains unclear [33]. 
A study revealed that a high TMB in colorectal cancer 
and esophageal cancer indicates a poor prognosis, while a 
high TMB in tumors such as urothelial carcinoma, endo-
metrial carcinoma, and gastric adenocarcinoma is associ-
ated with a better prognosis [34]. Additionally, McGrail 
et  al. reported that TMB in breast cancer is not linked 
to patient prognosis [35]. Preclinical studies have shown 
that tumors with high TMB and low intratumoral het-
erogeneity exhibit slow growth and low invasiveness in 

both in vivo and in vitro experiments [36]. This suggests 
that the use of the TMB to monitor treatment efficacy in 
some tumors may have limitations and inconsistencies. 
In this study, we considered the clonal evolution char-
acteristics of tumor-related gene mutations and tumor 
heterogeneity in terms of time and space. We proposed 
the TER as a new indicator to reflect the rate of change 
in the tumor evolution process and tumor heterogene-
ity. Our findings suggest that TER can predict treatment 
efficacy and prognosis, overcoming TMB’s limitations in 
prognosis prediction. Thus, TER may serve as a potential 
biomarker, providing new evidence for using ctDNA as a 
molecular marker in predicting the efficacy and progno-
sis of breast cancer treatment.

This study also has several limitations. First, it is a ret-
rospective study, and more prospective clinical studies 
are needed to confirm the role of the TER in predict-
ing tumor efficacy and prognosis. Second, all patients 
included in this study had breast cancer, and further 
exploration of the clinical application value of the TER in 
other types of tumors is needed.

Conclusions
This study analyzed peripheral blood ctDNA in patients 
with metastatic breast cancer to elucidate genetic 
changes and tumor clonal evolution following multiple 
treatments. It provides a deeper understanding of tumor 
evolution in response to anticancer therapies. Patients 
exhibiting branched evolution pattern experienced poor 
outcomes. The development of the TER as a novel molec-
ular indicator for predicting treatment efficacy and prog-
nosis supports the use of ctDNA as a valuable molecular 
marker in breast cancer treatment.
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