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Abstract 

Background Early diagnosis of biliary atresia (BA) is crucial for improving patient outcomes, yet remains a significant 
global challenge. This challenge may be ameliorated through the application of artificial intelligence (AI). Despite 
the promise of AI in medical diagnostics, its application to multimodal BA data has not yet achieved substantial break-
throughs. This study aims to leverage diverse data sources and formats to develop an intelligent diagnostic system 
for BA.

Methods We constructed the largest known multimodal BA dataset, comprising ultrasound images, clinical data, 
and laboratory results. Using this dataset, we developed a novel deep learning model and simplified it using easily 
obtainable data, eliminating the need for blood samples. The models were externally validated in a prospective study. 
We compared the performance of our model with human experts of varying expertise levels and evaluated the AI 
system’s potential to enhance its diagnostic accuracy.

Results The retrospective study included 1579 participants. The multimodal model achieved an AUC of 0.9870 
on the internal test set, outperforming human experts. The simplified model yielded an AUC of 0.9799. In the prospec-
tive study’s external test set of 171 cases, the multimodal model achieved an AUC of 0.9740, comparable to that of 
a radiologist with over 10 years of experience (AUC = 0.9766). For less experienced radiologists, the AI-assisted diag-
nostic AUC improved from 0.6667 to 0.9006.

Conclusions This AI-based screening application effectively facilitates early diagnosis of BA and serves as a valuable 
reference for addressing common challenges in rare diseases. The model’s high accuracy and its ability to enhance 
the diagnostic performance of human experts underscore its potential for significant clinical impact.
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Background
Biliary atresia (BA) is a rare idiopathic fibro-obliterative 
cholangiopathy that occurs during the perinatal period 
[1, 2]. The incidence of BA varies from 1:20,000 in North 
America and Europe to 1:5000–1.1:10,000 in Asia [3–7]. 
It is the leading cause of liver transplantation in children. 
Without treatment, BA inevitably progresses to end-stage 
liver disease and results in death within the first 2 years 
of life. The Kasai portoenterostomy procedure, followed 
by liver transplantation, has dramatically prolonged sur-
vival and improved quality of life since 1968 [8]. Early age 
at the time of the Kasai portoenterostomy is one of the 
most important factors in predicting surgical outcomes, 
with the best results achieved when performed before 
30 to 45 days of age [9–11]; after that, the chance of suc-
cess diminishes significantly with age. Unfortunately, the 
median age at the time of the Kasai procedure is approxi-
mately 60 days, with no improvement over time [9, 10]. 
The major cause for delay is the absence of effective and 
practical screening methods, thus presenting early diag-
nosis as a prominent and persisting clinical challenge.

Clinical profiles and noninvasive indicators could raise 
clinical suspicion and prompt further investigation. How-
ever, no single method in isolation can establish the diag-
nosis of BA. Most infants with BA have normal prenatal 
monitoring results and typically appear healthy at birth 
without feeding intolerance or growth retardation. Jaun-
dice may be present early but is usually indistinguishable 
from physiological jaundice and other causes of neona-
tal cholestasis, including anatomic, infectious, genetic, 
metabolic, inflammatory, and endocrine conditions. Sev-
eral laboratory findings, including elevated conjugated 
bilirubin and gamma-glutamyltransferase (GGT), have 
been proven to help facilitate BA recognition. However, 
the reliability of these serum markers alone is limited 
in terms of identifying BA. Ultrasound (US) is typically 
the initial and most commonly used imaging modal-
ity for neonatal cholestasis. Among various US features, 
gallbladder abnormalities and the “triangular cord” sign 
(TCS) are regarded as the most supportive and widely 
accepted BA indicators [12–15]. Nevertheless, the US 
is highly operator-dependent, and the sensitivity of the 
TCS varies dramatically in different studies, ranging from 
17 to 100% [16]. Surgical exploration and intraoperative 
cholangiography, although invasive and associated with 
radiation risks, are still necessary to establish a definitive 
diagnosis because of the lack of pathognomonic symp-
toms or unequivocal biomarkers are [17]. However, a sig-
nificant proportion of neonatal cholestasis cases do not 
have BA, and the issue of “over-testing” deserves special 
concern.

An accurate and noninvasive method for detecting BA 
largely depends on effectively integrating multimodal 

medical data, including the clinical manifestations, labo-
ratory tests, and US features from the centers with sig-
nificant experience. However, the combination and 
optimization of clinical data require multi-disciplinary 
collaboration, which can be limited due to the additional 
consumption of medical resources. This is especially true 
when dealing with rare clinical conditions, where institu-
tions and clinicians with substantial diagnostic expertise 
are hard to acquire. Given the low incidence of the dis-
ease, the limited accuracy of noninvasive tests, and the 
imperative of early diagnosis and intervention, it is time 
to shift our attention to the field of artificial intelligence-
aided (AI-aided) diagnostic technology [18, 19]. Among 
AI techniques, Deep learning offers significant advan-
tages in data analysis [20–25].

Deep learning has shown promising results in the diag-
nosis of BA based on gallbladder US images [26–28], 
achieving an area under the curve (AUC) of 0.956 [26]. 
However, diagnosis methods that rely solely on gallblad-
der images may overlook other relevant information and 
may not be adequate for complex cases in which the 
gallbladder cannot be recognized or exhibits minimal 
morphological changes. Up to now, efforts to effectively 
utilize multimodal BA data with AI technology have not 
yielded significant breakthroughs. Current AI methods 
encounter challenges when handling multimodal medi-
cal data, including significant morphological variations 
and dispersed information among the data modalities 
[29–32].

In this study, we aimed to enhance the diagnosis of BA 
by fusing multimodal medical data using deep learning. 
To emulate clinical diagnostic strategies, we collected 
clinical data related to BA diagnosis and built a mul-
timodal dataset, which is currently the largest dataset 
available in the literature. Our proposed multimodal deep 
learning method allowed for precise and noninvasive BA 
diagnosis. To address the challenges of noticeable differ-
ences and scattered information across data types, we 
introduced an attention mechanism for intra- and inter-
modality fusion to aggregate critical and informative data 
from each modality. In addressing the common problem 
of missing modalities in multimodal data, our approach 
diverged from conventional interpolation methods by 
incorporating prior knowledge into our method. To fur-
ther assess the generalization ability of the model, we 
conducted prospective validation using an external test 
cohort.

Methods
Data collection and processing
This study was divided into two parts. The first part was 
a retrospective study. In this part, we reviewed the medi-
cal records of patients retrospectively from November 
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2016 to August 2022 at a single tertiary center, which 
served as the national referral center for BA. The study 
received approval from the Institutional Review Board 
of our center. Infants aged < 6  months with conjugated 
hyperbilirubinemia (the ratio of the direct to total bili-
rubin levels > 20% when the total direct bilirubin serum 
was ≥ 85  µmol/L and ≥ 17.1  µmol/L when the total bili-
rubin was < 85  µmol/L) and those suspected of having 
BA were enrolled in this study. The exclusion criteria 
included (1) patients with unclear final diagnosis and 
(2) patients with unavailable data. Reference standard: 
The diagnosis of BA was ruled out if cholangiography 
showed a patent biliary tree or if there was recovery from 
cholestasis during the clinical follow-up period. Confir-
mation of the diagnosis was achieved through surgical 
exploration and intraoperative cholangiogram. We also 
randomly selected some infants who had no significant 
liver disease. The second part of the study was a prospec-
tive study conducted from September 2022 to November 
2023 at the same center. Patients who met the aforemen-
tioned criteria were enrolled in the study. This subset of 
patients was designated as the external test dataset. The 
sample allocation flowchart is shown in Fig. 1A.

Demographic characteristics, medical histories, and 
laboratory test results were collected from the patient’s 
medical records. In addition to US images of the gallblad-
der and TCS, we also incorporated images of the liver 
capsule and parenchyma as input data for BA classifica-
tion. Small nodules and unevenly thickened liver capsules 
are frequently observed on the outer surface of the liver 
during surgery in BA patients. While these manifesta-
tions are not commonly utilized in clinical settings, we 
included the US features of the liver parenchyma and 
liver capsule to test if AI exhibits heightened sensitiv-
ity towards these subtle changes. The region of inter-
est (ROI) box was marked with a rectangle covering the 
minimum area of the corresponding position. After ini-
tial annotations were completed by the primary experts, 
these annotations underwent a peer review by a second 

independent annotator. Seven clinical information vari-
ables were included: gender, age, body weight, preterm 
status, jaundice, clay stool, and dark urine. Fourteen 
laboratory test data variables were included: total bili-
rubin (TB), direct bilirubin (DB), DB-to-TB ratio, total 
bile acid (TBA), total protein (TP), albumin (ALB), ala-
nine aminotransferase (ALT), aspartate aminotransferase 
(AST), gamma-glutamyl transpeptidase (GGT), alkaline 
phosphatase (ALP), platelets (PLTs), white blood cells 
(WBCs), prothrombin time (PT), and activated partial 
thromboplastin time (APTT). The input data for the mul-
timodal model comprised 4 types of two-dimensional US 
images and 21 variables (7 clinical information and 14 
laboratory test parameters).

Multimodal model
To enhance the integration of medical data in various 
forms, our model comprised four essential components 
that enabled effective fusion and adaptation to different 
data modalities: data mapping and enhancement, feature 
extraction, modality fusion, and multi-loss joint training 
modules. These modular parts were plug-and-play mod-
ules that could be freely switched to satisfy different task 
requirements.

As shown in Fig.  1C, the data were processed and 
mapped to the input format. Then, the data were passed 
through the feature extraction module of each modality 
to obtain a high-dimensional semantic feature represen-
tation. For the selection of the feature extraction mod-
ules, we used Swin Transformer V2 [33] as the visual 
encoder and MLP as the numeric data encoder. Follow-
ing this, the feature fusion module undertook a compre-
hensive analysis of the semantic feature integration. We 
proposed a novel feature fusion mechanism called Self-
Masked Attention for visual intra-modality fusion and 
MLP for inter-modality fusion (Additional file 1: Supple-
mentary Information S2).

In the training phase, we combined and arranged each 
patient’s four types of images, and then connected them 

(See figure on next page.)
Fig. 1 Flow diagram of the study, multimodal model design, and retrospective results. A Flow diagram of the inclusion and exclusion of patients 
in the study. B ROC curves of the multimodal model and four experts. C Overview of the proposed multimodal deep model method. This model 
mainly comprises four parts: data mapping and enhancement, feature extraction, modality fusion, and multi-loss joint training modules. Each 
part can be switched freely to satisfy different task requirements. In the feature extraction stage, we use the Swin transformer as a visual encoder 
to extract features from the input images. During the modality fusion stage, we employ a self-masked attention mechanism to fuse visual features, 
followed by the fusion of different modalities using a multi-layer perceptron (MLP). The fused features are subsequently used for classification 
and prediction. D Changes in diagnostic outcomes of radiologists when assisted by the multimodal model on the internal test dataset. Illustration 
of changes in AUC, sensitivity, specificity, accuracy, PPV, and NPV of the four experts before and after the assistance of the model. Circles represent 
the diagnostic outcomes of the radiologists when the diagnosis was established independently, squares represent the diagnostic outcomes 
when aided by the model, and stars denote the performance of the model. Expert 1, Expert 2, and Expert 3 refer to radiologists with more 
than 10 years, more than 5 years, and more than 1 year of experience in pediatric US, respectively. Expert 4 refers to a radiologist without experience 
in pediatric US
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with the corresponding clinical and laboratory test data 
to form the input data. Each patient contributed multiple 
input samples, and their diagnostic annotations served 
as the labels for each sample. This method enabled the 
model to comprehensively learn the associations between 
each position and modality within the combination data.

Simplified multimodal model
Our model was built on a modular framework that ena-
bled the flexible interchangeability of components to 
satisfy different task requirements. To identify the mean-
ingful input data in the BA diagnosis process and opti-
mize the applicability of our model in clinical settings, we 
selected and combined different modalities of data and 
trained a more compact model for prediction (Additional 
file 1: Fig. S8). In this simplified model, we reduced the 
number of encoders and heads while retaining the MLP-
based fusion mechanism for modality fusion. Notably, 
the training and inference procedures of the simplified 
model remained consistent with those of the main model 
to ensure the robustness and accuracy of the simplified 
model.

Diagnosis by radiologists
We conducted a comparative study to evaluate the effec-
tiveness of our model versus clinical experts in terms of 
BA diagnosis. In this part, four radiologists (three radi-
ologists from our center with more than 10 years, more 
than 5 years, and more than 1 year of experience in BA 
diagnosis, and one radiologist from another center with-
out experience in BA diagnosis) independently reviewed 
all the US images. All these radiologists were provided 
with associated information typically available in the 
clinical setting, including demographic data, clinical 
signs and symptoms, laboratory features, and US images, 
which were also provided as input data to the AI system. 
The radiologists were blinded to the patients’ identities 
and final diagnoses. To assess the ability of our model to 
enhance the performance of the radiologists, we further 
presented the predictive results of the model to the radi-
ologists, who then made the diagnosis by referring to the 
predictions of the model.

Visualization
One way to explain a black-box diagnostic model is to 
visualize its decision-making process by showing its 
attention distribution for images. However, it is chal-
lenging to generate separate attention maps for multiple 
images using the gradient derivation method. Therefore, 
we used the single-modal model to display the attention 
areas of the images. We used the Grad-CAM method 
[34] to calculate and visualize the attention maps from 
the output results to the input space.

Statistical analysis
We evaluated the performance of the models and radiolo-
gists by calculating AUC, sensitivity, specificity, accuracy, 
positive predictive value, and negative predictive value. 
The 95% confidence intervals of sensitivity and specificity 
were calculated using the “exact” Clopper-Pearson con-
fidence interval. The 95% confidence intervals of AUCs 
were obtained using Delong’s method. When comparing 
the AUCs, the P value was also calculated by the Delong 
test [35]. A P value < 0.05 indicated a statistically signifi-
cant difference.

Results
Data and dataset
In the retrospective part, we enrolled 681 BA patients 
and 898 non-BA patients (458 with other cholestasis dis-
eases and 440 infants without liver disease). To ensure 
balanced distributions among different categories, we 
randomly split the dataset into training, validation, and 
test sets at a ratio of 6:1:3. The training set comprised 408 
cases of BA, 274 cases of other cholestasis, and 264 cases 
without liver disease. The validation set consisted of 68 
cases of BA, 46 cases of other cholestasis, and 44 cases 
without liver disease. The test set contained 205 cases of 
BA, 138 cases of other cholestasis, and 132 cases without 
liver disease. The clinical characteristics of the included 
patients are displayed in Additional file 1: Table S1. Fol-
lowing the retrospective study, the prospective study 
included 171 cases, comprising 70 cases of BA, 55 cases 
with other cholestasis diseases, and 46 cases without liver 
disease.

Predictive outcomes of the multimodal model
On the internal test set, the multimodal model achieved 
an AUC of 0.9870, a sensitivity of 0.9561, a specificity of 
0.9630, an accuracy of 0.9600, a positive predictive value 
of 0.9515, and a negative predictive value of 0.9665. A 
positive correlation between diagnostic experience and 
diagnostic accuracy was observed (Table  1). The multi-
modal model outperformed all four radiologists (Table 1 
rows 2–5, Fig.  1B), including one radiologist with more 
than 10  years of pediatric US experience, who achieved 
an AUC of 0.9474, a sensitivity of 0.9512, a specificity of 
0.9444, an accuracy of 0.9474, a positive predictive value 
of 0.9286, and a negative predictive value of 0.9623. The 
Delong test indicated significant differences in AUCs 
between the four experts and the model.

Following conventional multimodal processing 
approaches, data are typically directly projected and 
fed into a transformer-based encoder. We also explored 
early data fusion methods (Additional file  1: Sup-
plementary Information S13.1), but the results were 
unsatisfactory, with an AUC of 0.7431, a sensitivity 
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of 0.8018, a specificity of 0.6465, and an accuracy of 
0.7444. Moreover, with consideration of the differences 
between modalities, we used cross-attention mecha-
nisms to fuse the image and numeric data modalities 
(Additional file  1: Supplementary Information S13.2), 
this approach achieved an AUC of 0.8323, a sensitiv-
ity of 0.9171, a specificity of 0.8963, and an accuracy of 
0.9053. The results indicated that both intra- and inter-
modal differences warranted refined processing, par-
ticularly in medical data where instances of the same 
data type may vary with respect to objects and infor-
mation density. Consequently, additional work beyond 
simply partitioning the data based on their modalities 
may be necessary.

On the external test set, the multimodal model 
achieved an AUC of 0.9740, a sensitivity of 0.9130, a 
specificity of 0.9510, an accuracy of 0.9357, a positive 
predictive value of 0.9515, and a negative predictive value 
of 0.9665. These results were comparable to the radi-
ologist with over 10 years of experience (AUC = 0.9766), 
and no statistically significant differences were observed 
(Table  2, Fig.  2B). We compared the diagnostic results 
between radiologists and the model and the model exhib-
ited fewer errors in its predictions compared to the radi-
ologists (Table 3).

In total, there were 6 false negative cases and 5 false 
positive cases. Of these 11 cases, all but 2 were male, 
with 1 false negative case and 1 false positive case 

Table 1 Performance of the models and experts under various data settings on the internal test dataset

Expert 1, Expert 2, and Expert 3 refer to radiologists with more than 10 years, more than 5 years, and more than 1 year of experience in BA diagnosis, respectively. 
Expert 4 refers to a radiologist without experience in BA diagnosis

TCS triangular cord sign, CI clinical information, LTD laboratory test data, AUC area under receiver operating characteristic curve, PPV positive predictive value, NPV 
negative predictive value
1 The values were calculated using the Delong test to compare the AUCs

Data AUC 
(95% CI)

Sensitivity
(95% CI)

Specificity
(95% CI)

Accuracy PPV NPV P value1

Multimodal model US modality, CI and LTD 0.9870
(0.9777, 0.9958)

0.9561
(0.9183, 0.9797)

0.9630
(0.9329, 0.9821)

0.9600 0.9515 0.9665 -

Expert 1 0.9474
(0.9277, 0.9680)

0.9512
(0.9121, 0.9764)

0.9444
(0.9100, 0.9686)

0.9474 0.9286 0.9623  < 0.001

Expert 2 0.8695
(0.8507, 0.9068)

0.9463
(0.9060, 0.9729)

0.8111
(0.7592, 0.8560)

0.8695 0.7918 0.9522  < 0.001

Expert 3 0.8295
(0.8107, 0.8729)

0.9317
(0.8881, 0.9622)

0.7519
(0.6959, 0.8022)

0.8295 0.7403 0.9355  < 0.001

Expert 4 0.8147
(0.8081, 0.8648)

0.9951
(0.9731, 0.9999)

0.6778
(0.6185, 0.7331)

0.8147 0.7010 0.9946  < 0.001

Unimodal model Gallbladder 0.9666
(0.9512, 0.9835)

0.8361
(0.7743, 0.8866)

0.9572
(0.9247, 0.9784)

0.9091 0.8945 0.9333 -

TCS 0.9418
(0.9136, 0.9689)

0.8421
(0.7786, 0.8933)

0.9602
(0.9258, 0.9816)

0.9093 0.8893 0.9412 -

Liver capsule 0.7977
(0.7500, 0.8452)

0.7468
(0.6705, 0.8133)

0.7421
(0.6738, 0.8027)

0.7442 0.7833 0.7012 -

Liver parenchyma 0.8389
(0.8019, 0.8730)

0.7363
(0.6697, 0.7958)

0.7566
(0.7005, 0.8068)

0.7479 0.7922 0.6948 -

CI and LTD 0.9595
(0.9433, 0.9766)

0.9317
(0.8881, 0.9622)

0.8852
(0.8410, 0.9206)

0.9053 0.8604 0.9447 -

Simplified multimodal model Gallbladder, TCS 0.9590
(0.9457, 0.9778)

0.8439
(0.7868, 0.8907)

0.9630
(0.9329, 0.9821)

0.9116 0.9454 0.8904  < 0.001

Gallbladder, TCS, and CI 0.9731
(0.9596, 0.9857)

0.9024
(0.8533, 0.9394)

0.9444
(0.9100, 0.9686)

0.9263 0.9250 0.9273 0.0110

Gallbladder, TCS, CI, and LTD 0.9791
(0.9662, 0.9898)

0.9463
(0.9060, 0.9729)

0.9481
(0.9145, 0.9714)

0.9474 0.9327 0.9588 0.0420

US modality 0.9535
(0.9398, 0.9760)

0.8390
(0.7814, 0.8865)

0.9407
(0.9055, 0.9658)

0.8968 0.9149 0.8850  < 0.001

US modality and CI 0.9799
(0.9689, 0.9918)

0.8878
(0.8364, 0.9275)

0.9444
(0.9100, 0.9686)

0.9200 0.9239 0.9173 0.2070

US modality and LTD 0.9795
(0.9671, 0.9902)

0.9268
(0.8822, 0.9585)

0.9444
(0.9100, 0.9686)

0.9368 0.9268 0.9444 0.0805
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being female. Among the 6 false negative cases, where 
the model failed to correctly diagnose BA, 3 cases 
presented with evidently small or difficult-to-identify 
gallbladders, while 3 cases exhibited slightly irregular 
gallbladders—a known challenge in radiological assess-
ments. This suggests that the model’s performance may 
be influenced by the quality of the imaging data or by 
atypical presentations of the condition. For the 5 false 
positive cases, where the model incorrectly diagnosed 
BA in patients without the condition, 3 patients were 
under 1 month of age. Additionally, 2 cases of chole-
dochal cysts were misclassified as cystic BA. In 4 of the 
5 false positive cases (including the two choledochal 
cysts), the GGT levels were significantly elevated, rang-
ing from 528 to 990 U/L. This indicates that the model 
may be more prone to false positives in very young 
infants and patients with choledochal cysts, as well as 
those with elevated GGT levels.

Diagnostic performance with the assistance 
of a multimodal model
On the internal test set, all radiologists demonstrated 
an improvement in diagnostic AUC when assisted by 
the model, with greater enhancements observed among 
those with less experience (Fig. 1D). In terms of sensitiv-
ity, the performance of all radiologists with over 1  year 
of experience improved and surpassed that of the model, 
while the performance of the radiologist without diag-
nostic experience declined to the same level as that of the 
model. A high sensitivity is essential for effective screen-
ing of this relatively rare but highly lethal disease because 
a highly sensitive test reduces the risk of false negative 
results. All radiologists exhibited improved specific-
ity, except for the radiologist with more than 10 years of 
experience. Similar trends were observed for accuracy 
and PPV, where radiologists with less experience showed 
greater improvements. Similar to sensitivity, the NPV of 

Table 2 Performance of the models and experts on the external test dataset

Expert 1, Expert 2, and Expert 3 refer to radiologists with more than 10 years, more than 5 years, and more than 1 year of experience in BA diagnosis, respectively. 
Expert 4 refers to a radiologist without experience in BA diagnosis

AUC  area under receiver operating characteristic curve, PPV positive predictive value, NPV negative predictive value
1 The values were calculated using the Delong test to compare the AUCs

AUC 
(95% CI)

Sensitivity
(95% CI)

Specificity
(95% CI)

Accuracy PPV NPV P  value1

Multimodal model 0.9740
(0.9490, 0.9959)

0.9420
(0.8582, 0.9840)

0.9510
(0.8893, 0.9839)

0.9600 0.9515 0.9665 -

Expert 1 0.9766
(0.9473, 0.9994)

0.9565
(0.8782, 0.9909)

0.9902
(0.9466, 0.9998)

0.9474 0.9286 0.9623 0.9489

Expert 2 0.9064
(0.8778, 0.9559)

0.9710
(0.8992, 0.9965)

0.8627
(0.7804, 0.9229)

0.8695 0.7918 0.9522 0.0044

Expert 3 0.8070
(0.7926, 0.8839)

0.9317
(0.8881, 0.9622)

0.7519
(0.6959, 0.8022)

0.8295 0.7403 0.9355  < 0.001

Expert 4 0.6667
(0.5612, 0.7018)

0.4493
(0.3292, 0.5738)

0.8137
(0.7245, 0.8840)

0.8147 0.7010 0.9946  < 0.001

Expert 1 with machine aided 0.9766
(0.9516, 0.9998)

0.9710
(0.8992, 0.9965)

0.9804
(0.9310, 0.9976)

0.9474 0.9286 0.9623 0.7839

Expert 2 with machine aided 0.9123
(0.8690, 0.9558)

0.9130
(0.8203, 0.9674)

0.9118
(0.8391, 0.9589)

0.8695 0.7918 0.9522 0.0015

Expert 3 with machine aided 0.8947
(0.8704, 0.9484)

0.9855
(0.9219, 0.9996)

0.8333
(0.7466, 0.8998)

0.8295 0.7403 0.9355  < 0.001

Expert 4 with machine aided 0.9006
(0.8417, 0.9401)

0.8406
(0.7326, 0.9176)

0.9412
(0.8764, 0.9781)

0.8147 0.7010 0.9946 0.0016

Fig. 2 Prospective external cohort characteristics and results. A Heat map of clinical and laboratory test characteristics for the prospective external 
cohort of 171 cases. The color intensity of each element correlates to its values. B ROC curve analysis of the multimodal models and experts 
on the external test dataset. C Distribution of each group within the external test cohort. D Changes in diagnostic outcomes of radiologists 
when assisted by the multimodal model on the external test dataset. Illustration of changes in AUC, sensitivity, specificity, accuracy, PPV, and NPV 
of the four experts before and after the assistance of the model. Circles represent the diagnostic outcomes of the radiologists when the diagnosis 
was established independently, squares represent the diagnostic outcomes when aided by the model, and stars denote the performance 
of the model. Expert 1, Expert 2, and Expert 3 refer to radiologists with more than 10 years, more than 5 years, and more than 1 year of experience 
in pediatric US, respectively. Expert 4 refers to a radiologist without experience in pediatric US

(See figure on next page.)
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the least experienced radiologist declined to the level of 
the model, while other radiologists demonstrated higher 
NPV and outperformed the model.

On the external test set, the same trend was observed, 
with less experienced radiologists showing more notable 
improvements in AUC with the assistance of the model 

Fig. 2 (See legend on previous page.)
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(Fig.  2D). Specifically, the AUC of the radiologist with-
out experience in BA diagnosis increased from 0.6667 to 
0.9006, sensitivity improved from 0.4493 to 0.8406, and 
specificity increased from 0.8137 to 0.9412. However, the 
radiologist with over 10 years of experience did not show 

any improvement in AUC after AI assistance. Overall, 
the results suggest that experience plays a crucial role in 
the performance of radiologists, while our model can sig-
nificantly enhance the diagnostic accuracy of less experi-
enced radiologists.

Predictive outcomes of the simplified multimodal model
Using easily obtained data, even avoiding pain from 
blood sampling, our simplified model achieved an AUC 
of 0.9799 (Table  1 row 15), which was comparable to 
the performance of the multimodal model mentioned 
above. Moreover, the combination of the gallbladder 
and the TCS yielded an AUC of 0.9590 (Table 1 row 11). 
By incorporating clinical information and laboratory 
test features, the model further improved its AUC to 
0.9791 (Table 1 row 13). All the ROC curves are shown 
in Fig. 3A.

Predictive outcomes of the unimodal model
The results were consistent with clinical experience. 
The gallbladder achieved the highest performance, with 

Table 3 Comparison of diagnostic results of the model and 
experts

Expert 1, Expert 2, and Expert 3 refer to radiologists with more than 10 years, 
more than 5 years, and more than 1 year of experience in BA diagnosis, 
respectively. Expert 4 refers to a radiologist without experience in BA diagnosis

Test cohort Experts Doctor incorrect, 
model correct

Doctor correct, 
model incorrect

Internal test Expert 1 18 12

Expert 2 50 7

Expert 3 72 10

Expert 4 78 9

External test Expert 1 1 8

Expert 2 13 8

Expert 3 31 9

Expert 4 52 6

Fig. 3 Prospective external cohort characteristics and results. A ROC curves of simplified multimodal models under different data settings. B–E 
ROC curves of unimodal models based on the gallbladder, triangular cord sign (TCS), liver capsule, and liver parenchyma US images. F ROC curve 
of unimodal based on the combination of clinical information (CI) and laboratory test data (LTD)
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an AUC of 0.9666, a sensitivity of 0.9572, a specificity 
of 0.8415, an accuracy of 0.9091, a positive predictive 
value of 0.8945, and a negative predictive value of 0.9333 
(Table  1 row 6; Fig.  3B). The TCS achieved an AUC of 
0.9418, a sensitivity of 0.9602, a specificity of 0.8421, an 
accuracy of 0.9093, a positive predictive value of 0.8893, 
and a negative predictive value of 0.9412 (Table 1 row 7; 
Fig. 3C). The AUCs of the liver capsule and liver paren-
chyma were 0.7977 and 0.8389, respectively (Table 1 rows 
8–9; Fig.  3D, E), indicating moderate classification per-
formance. The numeric data yielded unexpectedly high 
diagnostic accuracy with an AUC of 0.9595, a sensitivity 
of 0.9317, a specificity of 0.8852, an accuracy of 0.9053, a 
positive predictive value of 0.8604, and a negative predic-
tive value of 0.9447 (Table 1 row 10; Fig. 3F), showcasing 
the novel capabilities of machine learning in deciphering 
the complex relationships among numeric variables.

Visualization results
As depicted in Fig.  4, the red areas represent the most 
important parts that significantly contributed to the pre-
diction, while the blue areas represent less influential 
regions. These findings generally align with the expecta-
tions of clinicians. For gallbladder images, the model pri-
marily focused on the contour of the gallbladder and its 
surrounding areas. Similarly, for TCS images, the model 
directed its attention towards TCS regions. When ana-
lyzing liver capsule images, the model concentrated on 
specific regions within the location of the liver capsule. 
However, the model did not exhibit any specific regions 
of emphasis on liver parenchyma images. Instead, it 
appeared to extract global information from the images, 
possibly due to the dispersion of crucial information 
throughout the liver parenchyma.

Discussion
Although progress in diagnostic strategies for rare dis-
eases incorporating AI and its applications lags behind 
that of other medical disciplines, accelerating automated 
diagnosis for rare diseases holds great significance in 
providing high-quality, safe, and efficient healthcare, 
especially in primary care settings [36]. This study rep-
resents the pioneering effort to implement a multimodal 
intelligent screening tool that integrates demographic, 
clinical, laboratory, and US features using the largest 
available dataset of patients with BA. Clinical experi-
ence has shown that US images should be interpreted 
in conjunction with a patient’s clinical condition, rather 
than in isolation. Therefore, we employed a self-masked 
attention mechanism to integrate both intra- and inter-
modal information. This approach addresses the issue of 
missing data and enhances the high-precision diagnosis 
of BA through the comprehensive analysis of multimodal 

data. As expected, the proposed multimodal deep learn-
ing model outperformed models that relied solely on US 
parameters or various combinations of these parameters, 
indicating that each piece of scattered information con-
tributes to improving the prediction.

Constructing a high-precision and scalable multi-
modal model posed several challenges. The first chal-
lenge revolved around designing a scalable deep learning 
model capable of effectively processing multimodal 
inputs. Unlike previous multimodal approaches, which 
relied on large amounts of data to achieve excellent 
generalization performance [37, 38], we prioritized the 
effective utilization of multimodal data and the modular-
ization of key steps, enabling proper adjustments based 
on the specific data format and task type. The second 
challenge centered on developing efficient multimodal 
fusion techniques and addressing the issue of missing 
modalities. Traditional multimodal models relied heavily 
on global features and intermodal information for diag-
nostic predictions, while disregarding the specific infor-
mation contained within individual modalities [23]. Our 
proposed approach incorporated a self-masked attention 
mechanism for image data fusion to extract intra-modal 
information and an MLP for inter-modal fusion. Unlike 
the self-attention mechanism, the self-masked attention 
mechanism reduces the attention paid towards itself dur-
ing the computation process, allowing for a greater focus 
on information derived from other parts. This charac-
teristic is particularly advantageous in scenarios involv-
ing limited data, as it allocates more attention to external 
elements. Drawing on previous methods that used fusion 
feature space interpolation for completion [39], we intro-
duced prior knowledge and proposed a novel methodol-
ogy for fusion and supplementation of information across 
different modalities to address missing values.

In addition to highly precise predictions, our model 
has the advantage of providing clinical decision sup-
port. With the assistance of AI, all radiologists showed 
improvements in AUC, and these improvements were 
negatively correlated with their diagnostic experience. 
On the external test set, with the assistance of the model, 
the AUC of the radiologist without diagnostic experience 
increased from 0.6667 to 0.9006, sensitivity improved 
from 0.4493 to 0.8406, and specificity increased from 
0.8137 to 0.9412. It seems that experience is an impor-
tant factor in the performance of radiologists, which is 
not surprising given the complexity of medical imaging 
interpretation. However, our model has demonstrated 
its ability to greatly enhance the diagnostic proficiency 
of less experienced radiologists. This is a significant 
advancement with important implications for BA diag-
nosis, especially in resource-limited settings. The model 
may provide an accurate and reliable reference for 
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pediatricians, most of whom only encounter BA cases 
a handful of times throughout their career. Moreover, 
it offers an effective balance between cost and benefit 
by preventing the cycle of misdiagnosis and correction 

that often occurs when an inexperienced doctor makes 
an error and requires additional consultations. Patients 
could receive accurate diagnoses and treatment recom-
mendations without the need to travel long distances or 

Fig. 4 Visualization of the class activation maps generated by the unimodal model across four types of US images. The red regions in the heatmaps 
highlight the areas that attract the most attention from the model. Each subfigure consists of two rows: the upper row presents the original images 
fed into the model, while the lower row showcases the corresponding heatmap results
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bear the high costs associated with multiple consultations 
and specialist referrals. Misdiagnoses can sometimes 
trigger a cascade of unnecessary tests and treatments as 
doctors attempt to rule out potential conditions. An AI 
system that delivers a reliable diagnosis from the outset 
could help minimize these unnecessary investigations, 
ensuring a more focused and efficient use of healthcare 
resources.

In this study, we explored innovative approaches for BA 
prediction based on certain US features. While there have 
been successful applications of US imaging of liver cap-
sule and parenchyma for intelligent liver fibrosis predic-
tion in adult studies [40–42], it remains unclear whether 
this relationship in BA can be recognized by deep learn-
ing. Therefore, we extracted features of the liver capsule 
and parenchyma from US images for intelligent classifi-
cation of BA. The results indicated that the liver capsule 
and parenchyma achieved moderate classification perfor-
mance, with AUC values of 0.7977 and 0.8389, respec-
tively. However, it should be noted that visual inspections 
of changes in the liver capsule and echotexture of the 
parenchyma are considered to be inaccurate and unrelia-
ble in identifying BA. Another unanticipated finding was 
the remarkable performance achieved by clinical infor-
mation and laboratory test results (AUC = 0.9595). These 
findings imply that artificial intelligence demonstrates 
exceptional proficiency in detecting extremely subtle 
structural changes and managing intricate numerical 
tasks, which pose challenges for human interpretation.

The present study has several limitations that need 
to be acknowledged. Firstly, advanced techniques such 
as shear-wave elastography and new biomarkers like 
MMP-7, which have been reported to be effective in 
diagnosing BA, were not included in the model due to 
limited availability for reliable assessment. Secondly, 
deep learning is a data-driven analytical technique that 
lacks transparent inference explanations. We employed 
visualization techniques and comprehensive ablation 
experiments to address this limitation. However, these 
methods infer explanations based on the results rather 
than the internal reasoning process of the model. In the 
future, we can incorporate case-based methods to lever-
age the self-explained capabilities of machine learning 
[43, 44]. Thirdly, the validation of this model was con-
ducted at a single institution, a major referral center for 
BA treatment in northern China, and as such, the patient 
population reflects the characteristics of BA patients in 
this region. However, to ensure the broader applicabil-
ity of our findings, a multicenter study involving diverse 
healthcare settings and patient populations is warranted.

With heightened awareness of the challenges faced by 
existing BA screening systems and the need for limited 
invasiveness in neonates, it is now an opportune time to 

shift attention from traditional diagnostic patterns based 
on experience to intelligent diagnostic technology. The 
latter is expected to ensure that patients with rare dis-
eases in different institutions have access to high-quality 
care equally. Our study is the first attempt to apply deep 
learning-based algorithms to highly complex scenarios 
for BA diagnosis using multimodal data, without requir-
ing sophisticated equipment or specialized skills. It has 
the potential to assist in selecting neonates with sus-
pected BA for intraoperative cholangiography in a timely 
manner. This would help streamline diagnostic workflows 
and minimize the need for costly interventions, ensur-
ing that only the most necessary tests and treatments are 
administered, thereby optimizing resource utilization. 
Moreover, by enhancing diagnostic precision, our model 
could reduce readmissions and complications, which 
represent significant financial burdens on healthcare sys-
tems. Additionally, the integration of our model could 
increase labor efficiency by automating routine diagnos-
tic tasks, allowing clinicians to focus on more complex 
cases.

Conclusions
In this study, we developed and validated an AI-based 
diagnostic system for the early detection of BA using 
a comprehensive multimodal dataset. By integrating 
ultrasound images, clinical data, and laboratory results, 
our multimodal deep learning models achieved high 
accuracy, outperforming human experts in retrospec-
tive evaluations and demonstrating robust performance 
in prospective validation. Additionally, the significant 
improvement in diagnostic accuracy for less experienced 
radiologists when assisted by our AI system further 
underscores the value of this technology as a support-
ive tool in medical practice. Moreover, our approach 
addresses common challenges in rare disease diagnostics, 
providing a framework that could be adapted to other 
conditions with similar diagnostic complexities.
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