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Abstract 

Background There is emerging evidence that metabolites might be associated with risk of lung cancer, but their 
relationships have not been fully characterized. We aimed to investigate the association between circulating meta-
bolic biomarkers and lung cancer risk and the potential underlying pathways.

Methods Nuclear magnetic resonance metabolomic profiling was conducted on baseline plasma samples 
from 91,472 UK Biobank participants without cancer and pregnancy. Multivariate Cox regression models were 
employed to assess the hazard ratios (HRs) of 164 metabolic biomarkers (including metabolites and lipoprotein 
subfractions) and 9 metabolic biomarker principal components (PCs) for lung cancer, after adjusting for covariates 
and false discovery rate (FDR). Pathway analysis was conducted to investigate the potential metabolic pathways.

Results During a median follow-up of 11.0 years, 702 participants developed lung cancer. A total of 109 metabolic 
biomarkers (30 metabolites and 79 lipoprotein subfractions) were associated with the risk of lung cancer. Glycoprotein 
acetyls demonstrated a positive association with lung cancer risk [HR = 1.13 (95%CI: 1.04, 1.22)]. Negative associa-
tions with lung cancer were found for albumin [0.78 (95%CI: 0.72, 0.83)], acetate [0.91 (95%CI: 0.85, 0.97)], valine [0.90 
(95%CI: 0.83, 0.98)], alanine [0.88 (95%CI: 0.82, 0.95)], glucose [0.91 (95%CI: 0.85, 0.99)], citrate [0.91 (95%CI: 0.85, 0.99)], 
omega-3 fatty acids [0.83 (95%CI: 0.77, 0.90)], linoleic acid [0.83 (95%CI: 0.77, 0.89)], etc. Nine PCs represented over 90% 
of the total variances, and among those with statistically significant estimates, PC1 [0.85 (95%CI: 0.80, 0.92)], PC2 [0.88 
(95%CI: 0.82, 0.95)], and PC9 [0.87 (95%CI: 0.80, 0.93)] were negatively associated with lung cancer risk, whereas PC7 
[1.08 (95%CI: 1.00, 1.16)] and PC8 [1.16 (95%CI: 1.08, 1.26)] showed positive associations with lung cancer risk. The 
pathway analysis showed that the “linoleic acid metabolism” was statistically significant after the FDR adjustment (p 
value 0.0496).

Conclusions Glycoprotein acetyls had a positive association with lung cancer risk while other metabolites and lipo-
protein subfractions showed negative associations. Certain metabolites and lipoprotein subfractions might be 
independent risk factors for lung cancer. Our findings shed new light on the etiology of lung cancer and might aid 
the selection of high-risk individuals for lung cancer screening.
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Background
Lung cancer is one of the most common and fatal can-
cers in the world, with 2.5 million new cases of lung 
cancer and 1.8 million new lung cancer deaths in 2022 
according to GLOBOCAN [1]. Lung cancer screening 
is the most effective strategy to address the rising global 
public health challenge [2]. Current lung cancer screen-
ing has considered the traditional risk factors to iden-
tify high-risk populations [3] and around one third of 
lung cancer cases would still be missed when these risk 
factors were used in the selection criteria [4]. Therefore, 
it is crucial to expand our knowledge regarding risk 
factors of lung cancer and to identify biomarkers that 
could potentially be used for lung cancer screening.

Numerous biomarkers can be quantified in a sin-
gle measurement using metabolomic profiling, allow-
ing subsequent quantification of the associations 
between metabolites and physiological and pathologi-
cal changes, which captures the effects of genetic vari-
ation, environmental factors, and their interactions [5]. 
It has the potential to further enhance our understand-
ing of the potential metabolic mechanisms of diseases 
[6, 7]. Metabolic biomarkers have become a pivotal 
part of scientific research, with applications ranging 
from risk prediction, causal analysis, gene discovery, 
and drug target validation [8–11]. Prospective studies 
have investigated associations between some circulat-
ing metabolic biomarkers (e.g., amino acids, fatty acids, 
glucose, lipids) and other diseases (diabetes and cardio-
vascular diseases) and found that metabolic biomarkers 
are closely related to disease occurrence [12, 13]. Few 
studies have explored the association between limited 
lipids and metabolites and the risk of lung cancer and 
obtained inconsistent results [14–16]. A few stud-
ies explored the association of metabolic biomarkers 
with multiple cancer types [17–20], but a detailed and 
systematic analysis on lung cancer, with lung cancer-
specific covariates adequately adjusted, is still lacking, 
and potential metabolic mechanisms have not yet been 
explored.

Using recently available data from the UK Biobank 
(UKB) cohort, we characterize the associations of cir-
culating metabolic biomarkers, quantified by a high-
throughput targeted nuclear magnetic resonance 
(NMR) metabolomics platform, with the risk of inci-
dent lung cancer, and then explored the potential path-
way of circulating metabolic biomarkers. This study 
can help us to have a deeper understanding on poten-
tial metabolic mechanisms of lung cancer and identify 
high-risk individuals that might benefit from lung can-
cer screening.

Methods
Study design and study population
The UKB is a multi-center, population-based, large-
scale prospective cohort with 502,411 participants 
recruited [21]. The study design and study population 
details of the UKB have been described previously 
[22] and are available online (https:// www. ukbio bank. 
ac. uk/). Briefly, adults aged 37–73 years were regis-
tered with the UK National Health Service between 
2006 and 2010 from 22 assessment centers across Eng-
land, Wales, and Scotland. Participants underwent an 
extensive range of baseline assessments that included 
self-administered touchscreen questionnaires, physi-
cal measurements, and biological samples. Then, they 
consented to track their health over time through 
linkage to electronic health records. The cancer regis-
try data was available until 31 January 2021 for Scot-
land and 29 February 2020 for England and Wales. The 
UKB study received ethical approval from the National 
Health Service National Research Ethics Service (11/
NW/0382; 16/NW/0274). All participants gave written 
informed consent.

In the present study, we excluded those (i) with preva-
lent cancers at baseline (except for non-melanoma skin 
cancer, coded as C44 using the International Classifica-
tion of Diseases, 10th Revision [ICD-10]) (N = 37,940), 
(ii) pregnant at baseline assessment (N = 147), (iii) NMR 
metabolites data unavailable (N = 361,724), (iv) with 
extreme metabolic biomarkers data, defined as out-
lying metabolic biomarker values outside the top or 
bottom 0.1% of the metabolic biomarker distribution 
(N = 8383), and (v) with missing or outlying covariates 
data (N = 2745) (Additional file 1: Fig. S1).

Plasma biomarker profiling by NMR
Metabolomic profiling was performed on baseline plasma 
samples from a randomly chosen subset of approximately 
120,000 UKB participants [10] using a high-throughput 
NMR metabolomics platform [23, 24]. The blood sam-
ple handling and storage protocol has been previously 
described [25]. The quality control of metabolic bio-
markers is available elsewhere [17]. Briefly, two inter-
nal control samples from Nightingale Health and two 
blind duplicate samples from UK Biobank were utilized 
to monitor consistency metrics throughout the project. 
Samples were measured using six NMR spectrometers. 
The coefficients of variation across the biomarker meas-
ures were below 5% for most biomarkers. Other metrics, 
including technical consistency of measurements over 
consecutive shipment batches and in different NMR 
spectrometers, the correlation of blinded duplicate sam-
ples for each biomarker, and the biological consistency 

https://www.ukbiobank.ac.uk/
https://www.ukbiobank.ac.uk/
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in repeat-visit samples drawn from the same individu-
als 4 years apart, were also assessed to ensure the tech-
nical and biological repeatability of the measurements. 
Additionally, comparisons of the NMR biomarker meas-
urements to routine clinical chemistry are illustrated in 
Additional file 1: Fig. S2, with Pearson correlation coef-
ficients > 0.8 for all biomarkers except for albumin.

This simultaneously quantified 249 metabolic biomark-
ers (164 directly measured with absolute concentrations 
and 4 with the unit of diameters or degree, and 81 ratios 
of these), including metabolites and lipoprotein subfrac-
tions. A subset of 164 metabolic biomarkers with directly 
measured concentrations was selected for inclusion in 
the presented analyses to enable comparisons across 
metabolic biomarkers in their effect estimates.

Covariates
Questionnaires collected information on sociode-
mographic and lifestyle factors, including age, sex, 
Townsend deprivation index (classified into five quar-
tiles), and smoking status (never, former, and current 
smokers). Family history of lung cancer was collected (yes 
or no). Under standard protocols, physical measurements 
included height, weight, and spirometry, etc. Chronic 
obstructive pulmonary disease (COPD) was defined as 
a participant who met the spirometry criteria of having 
an FEV1/FVC ratio  less than 0.7 (GOLD-COPD) and 
a percentage of the predicted value of FEV1  less than 
80% or who had been diagnosed by a physician as hav-
ing COPD (emphysema or chronic bronchitis) [26]. Body 
mass index (BMI) was calculated as weight/height2 and 
further classified as underweight (less than 18.5 kg/m2), 
normal (18.5–24.9 kg/m2), overweight (25.0–29.9 kg/m2), 
and obesity (≥ 30 kg/m2). BMI less than 12 or larger than 
60 kg/m2 were considered outliers and would be deleted. 
Fasting hours before taking biological samples were 
recorded and those less than 1 h or more than 6 h were 
grouped due to small number of participants.

Outcomes
The incident lung cancer cases were defined by ICD-10 
codes (C33–C34). Due to the difficulties in distinguishing 
between metastatic and second primary cancer, as well as 
the varying risk profiles of lung cancer among individuals 
with a prior cancer diagnosis, participants were censored 
if cancer of any other site (apart from non-melanoma 
skin cancer) was identified before lung cancer. Every par-
ticipant was tracked prospectively until one of the follow-
ing events happened: diagnosis of lung cancer, censored, 
death, or lost follow-up. Primary lung cancers are classi-
fied as small-cell lung cancers (SCLC) and non-small cell 
lung cancers (NSCLC), with the latter consisting mostly 

of adenocarcinoma (LUAD) and squamous cell carci-
noma (LUSC) [27].

Statistical analysis
Baseline characteristics were presented using mean 
(and  standard deviation, SD) for continuous variables 
and frequency (and  percentage) for categorical vari-
ables. T-test, Wilcoxon rank-sum test, and χ2 tests were 
used where appropriate to compare baseline character-
istics between the NMR subset and total UKB partici-
pants. All NMR biomarkers were log-transformed and 
standardized.

The proportional hazard assumption was checked by 
tests based on Schoenfeld residuals. The Cox propor-
tional hazards model yielded hazard ratios for the asso-
ciations of 164 individual metabolic biomarkers after 
adjusting for age (continuous), sex (categorical, male ver-
sus female), Townsend deprive index (categorical, with 
the first quartile as referent), COPD (categorical, yes 
versus no), family history of lung cancer (categorical, yes 
versus no), smoking status (categorical, with never smok-
ers as referent), BMI (categorical, with normal as refer-
ent), and fasting time (categorical, with ≤ 1 h as referent). 
To investigate the shape of the relationships, subjects 
were divided into baseline groups based on distribution 
quartiles, and a trend test was performed across quartiles 
(Additional file  1: Fig. S3). Continuous assessments of 
each NMR biomarker were conducted to determine the 
HR per 1 SD increase in the metabolic biomarkers. Pear-
son correlation coefficients were calculated to quantify 
the correlation between metabolic biomarkers and were 
presented in a heatmap (Additional file 1: Fig. S4).

Principal component analysis (PCA) is to project high-
dimensional data into a low-dimensional space while 
retaining as much variance as possible [28, 29]. With the 
overall measure of sampling adequacy (MSA) of KMO 
test being 0.95 (> 0.80) and p value of Bartlett test < 0.001, 
the orthogonal PCA was further performed. And the 
number of principal components (PCs) is selected based 
on the scree plot with eigenvalue > 1 and cumulative 
proportion of variance ≥ 90%. Based on the correspond-
ing result (Additional file 1: Fig. S5), a total of 9 PCs was 
selected and incorporated into the Cox hazard model 
to assess the associations between these PCs and risk of 
lung cancer. Finally, we calculated the loadings from PCs 
to understand the correlations between original meta-
bolic biomarkers and PCs.

Selected individual metabolic biomarkers derived 
from the Cox regression model must meet the crite-
ria of false discovery rate (FDR) adjusted p value < 0.05 
and be mapped in the Kyoto Encyclopedia of Genes and 
Genomes (KEGG) (those that cannot be mapped directly 
would be removed). We performed pathway analysis 
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by overrepresentation and pathway topology through 
MetaboAnalyst 6.0 [30]. The metabolic biomarkers with 
FDR adjusted p value < 0.05 were subject to mapping the 
metabolites in KEGG, then pathway analysis was con-
ducted for the  mapped metabolites in MetaboAnalyst. 
Metabolic pathways with impact > 0.2 were considered in 
the study [31].

Subgroup analyses were performed to explore the 
potential modifying effects of covariates on associa-
tions between metabolic biomarkers and lung cancer. 
Specifically, the primary analysis was extended to con-
sider subgroups by histological subtype (NSCLC, SCLC; 
and for NSCLC, we also considered LUAD and LUSC), 
sex (female, male), and smoking status (never smoker, 
ever smoker).

We conducted several sensitivity analyses to determine 
the robustness of our findings. Firstly, we removed par-
ticipants with a follow-up of less than 2 years to avoid 
reverse causality. Secondly, we removed those who 
fasted for less than 3 h to minimize the impact of fast-
ing on metabolic indicators in plasma. Thirdly, we added 
pack years into the multivariate Cox models to minimize 
the residual confounding of smoking. Furthermore, we 
excluded participants diagnosed with cancer (except 
for non-melanoma skin cancer) shortly after baseline 
(i.e., ≤ 3 or ≤ 5 years) to reduce the influence of delayed 
cancer diagnosis on the results.

All statistical analyses were performed with the R soft-
ware (version 4.3.1, R foundation for statistical comput-
ing, Vienna, Austria). Statistical significance was defined 
as a 2-sided p value < 0.05.

Results
Of the total 502,411 UKB participants, a random set of 
approximately 118,000 (23%) participants had the NMR-
measured metabolic biomarkers data. After meeting the 
inclusion criteria (Additional file 1: Fig. S1), 91,472 par-
ticipants were included in this study. The mean age of 
participants in this study was 56.3 years (standard devia-
tion: 8.1 years) and 53% were women (Table 1). The study 
participants’ baseline characteristics are similar to those 
of the total UKB participants (Additional file 1: Table S1).

After a total of 964,292 person-years of follow-up 
(median 11.0 years, mean 10.5 years), 702 partici-
pants developed primary lung cancer. The incidence 
rate of lung cancer was 72.8 per 100,000. In multivari-
ate Cox  models, 109 of 164 metabolic biomarkers had 
statistically significant relationships with the risk of 
lung cancer (FDR adjusted p value < 0.05) (Fig. 1, Addi-
tional file  1: Table  S2). Glycoprotein acetyls, a marker 
of inflammation, demonstrated a positive associa-
tion with lung cancer risk, with an HR of 1.13 (95%CI: 
1.04, 1.22). Albumin [0.78 (95%CI: 0.72, 0.83)], acetate 

[0.91 (95%CI: 0.85, 0.97)], valine [0.90 (95%CI: 0.83, 
0.98)], histidine [0.90 (95%CI: 0.84, 0.97)], alanine [0.88 
(95%CI: 0.82, 0.95)], glucose [0.91 (95%CI: 0.85, 0.99)], 
citrate [0.91 (95%CI: 0.85, 0.99)], omega-3 fatty acids 
[0.83 (95%CI: 0.77, 0.90)], apolipoprotein A1 [0.86 
(95%CI: 0.78, 0.93)], apolipoprotein B [0.86 (95%CI: 
0.82, 0.94)], fatty acids (HRs around 0.81–0.90), glyc-
eride phospholipids (HRs around 0.82–0.86), and lipids 
(HRs around 0.83–0.86) were negatively associated 
with lung cancer risk (Fig. 1A). In addition, all lipopro-
tein subfractions are related to negative lung cancer 
risk, with the HRs ranging from 0.83 to 0.92 (Fig. 1B).

The top 9 PCs of the metabolic biomarkers accounted 
for 90.7% of the total variance in the 164 individual bio-
markers (Additional file  1: Fig. S5). As shown in Fig.  2, 
the principal components’ loadings could be observed 
(the higher a biomarker’s loading, the more it contrib-
utes to that PC). The major contributors in the first 4 PCs 

Table 1 Baseline characteristics of the study population

SD standard deviation, COPD chronic obstructive pulmonary disease, BMI body 
mass index

Characteristic Study 
population 
(n = 91,472)

Age, years, mean (SD) 56.3 (8.1)

Sex (%)

 Women 48,385 (52.9%)

 Men 43,087 (47.1%)

Townsend deprivation index, mean (SD)  − 1.4 (3.1)

Smoking status (%)

 Never 50,601 (55.3%)

 Former 31,494 (34.4%)

 Current 9377 (10.2%)

Family history of lung cancer (%)

 No 79,999 (87.5%)

 Yes 11,473 (12.5%)

COPD (%)

 No 86,016 (94.0%)

 Yes 5456 (6.0%)

BMI category (%)

 Underweight 419 (0.5%)

 Normal 29,365 (32.1%)

 Overweight 39,390 (43.1%)

 Obesity 22,298 (24.4%)

Fasting time, hour (%)

 ≤ 1 4417 (4.8%)

 2 19,252 (21.1%)

 3 26,800 (29.3%)

 4 20,075 (21.9%)

 5 10,977 (12.0%)

 ≥ 6 9951 (10.9%)
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Fig. 1 Associations of metabolic biomarkers with risk of lung cancer among the study population. Hazard ratios (with 95% confidence intervals) are 
presented per 1 − SD higher metabolic biomarker on the natural log scale, adjusted for age, sex, Townsend deprivation index, smoking, COPD, family 
history of lung cancer, fasting hours, and body mass index. *FDR adjustment p value < 0.05. FA, fatty acids; BCAAs, branched-chain amino acids; HDL, 
high-density lipoproteins; IDL, intermediate-density lipoproteins; LDL, low-density lipoproteins; VLDL, very low-density lipoproteins; XXL, extremely 
large; XL, very large; L, large; M, medium; S, small; XS, very small; P, lipoprotein particle; L, total lipid; PL, phospholipid; C, cholesterol; CE, esterified 
cholesterol; FC, free cholesterol; TG, triglyceride

Fig. 2 The factor loadings of principal components
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were lipoprotein subfraction concentrations, while for 
the last 5 PCs, the metabolite concentrations were prom-
inent contributors.

The relationships of PCs with lung cancer are pre-
sented in Additional file 1: Table S3 and Fig. 3. A statisti-
cally significant association was found between 5 out of 
9 PCs and risk of lung cancer. Pyruvate, lactate, acetone, 
citrate, and glucose predominate in PC8 [1.16 (95%CI: 
1.08, 1.26)] and glycoprotein acetyls, 3-hydroxybutyrate, 
acetoacetate, and acetone predominate in PC7 [1.08 
(95%CI: 1.00, 1.16)], both exhibited a positive associa-
tion with lung cancer. Albumin, glutamine, glycine, and 
histidine contributed to PC9 [0.87 (95%CI: 0.80, 0.93)] 

and cholesterol, lipids, fatty acids, apolipoproteins, and 
lipoprotein subfractions prominently contributed to both 
PC1 [0.87 (95%CI: 0.81, 0.93)] and PC2 [0.88 (95%CI: 
0.82, 0.95)], showing negative associations with lung 
cancer.

Results of the pathway analysis are shown in Fig. 4 and 
Additional file  1: Table  S4. A total of 25 pathways were 
related to the 14 metabolites  which were significantly 
associated with lung cancer risk. There are three path-
ways with an impact > 0.2. The first pathway was the “lin-
oleic acid metabolism” (FDR adjusted p value: 0.0496), 
with 5 total compounds including 2 Hits correspond-
ing to linoleic acid and phosphatidylcholine. The second 

Fig. 3 Associations of principal components with risk of lung cancer among the study population. Adjusted for age, sex, Townsend deprivation 
index, smoking, COPD, family history of lung cancer, fasting hours, and body mass index
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pathway was the “starch and sucrose metabolism” (FDR 
adjusted p value: 0.92). This pathway included 18 total 
compounds among which there was 1 Hit corresponding 
to glucose. The third pathway was the “histidine metabo-
lism” (FDR adjusted p value: 0.92), which included 16 
total compounds among which there was 1 Hit corre-
sponding to histidine.

Of the 702 primary lung cancer cases, 425 were clas-
sified as NSCLC (including 275 LUAD and 131 LUSC 
cases) and 82 as SCLC. Eighty-nine metabolic biomark-
ers were associated with NSCLC and 30 metabolic 
biomarkers were associated with LUAD after FDR adjust-
ment. Glycoprotein acetyls remained the only significant 
metabolic biomarker that is positively associated with the 
risk of lung cancer in the NSCLC group, while albumin, 
choline, and lipoprotein subfractions were negatively 
associated with the risk of lung cancer in both NSCLC 
and LUAD groups. And albumin and omega-3 fatty acids 
were inversely associated with LUSC after FDR adjust-
ment. We did not find any metabolic biomarker that was 

associated with SCLC (Additional file 1: Fig. S6). Among 
females, we observed that glycoprotein acetyls and lactate 
increased the risk of lung cancer, but cholesterol, alanine, 
and lipoprotein subfraction were adversely associated 
with lung cancer. A total of 109 metabolic biomarkers 
were found to be negatively associated with lung cancer 
risk in the male population. Among smokers, 96 meta-
bolic biomarkers were associated with lung cancer risk 
after FDR adjustment, with glycoprotein acetyls, lactate, 
and pyruvate showing positive associations and other 
metabolic biomarkers presenting negative associations. 
Null findings were observed for non-smokers (Additional 
file 1: Fig. S7).

In the sensitivity analysis, results were broadly similar 
to the main findings. The positive association between 
glycoprotein acetyls  and lung cancer remained  after 
adjusting for fasting time; and there were 79 metabolic 
biomarkers negatively associated with lung cancer risk 
after adjusting for follow-up time, fasting time, and 
pack years (Fig. 5). In addition, 93 metabolic biomarkers 

Fig. 4 Summary of pathways analysis using MetaboAnalyst
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remained statistically significant in the associations with 
lung cancer risk after excluding participants diagnosed 
with cancer shortly after baseline (≤ 3 and ≤ 5 years) 
(Additional file 1: Fig. S8).

Discussion
This prospective population-based cohort study among 
91,472 participants explored the association of NMR-
measured metabolic biomarkers (metabolites, lipo-
protein subfractions) with lung cancer risk; 109 of 164 
metabolic biomarkers had statistically significant rela-
tionships with lung cancer. Glycoprotein acetyls demon-
strated a robust and positive association with lung cancer 
risk, with the highest hazard ratio compared to other 
metabolites. Negative associations with lung cancer were 
found for albumin, acetate, valine, histidine, alanine, glu-
cose, citrate, fatty acids, apolipoproteins, glyceride phos-
pholipids, lipids, and lipoprotein subfractions (around 
0.8–0.9). The pathway analysis showed that the “linoleic 
acid metabolism” was statistically significant after apply-
ing the FDR adjustment (p value 0.0496). To our knowl-
edge, this study is the first to systematically evaluate the 
impact of metabolic biomarkers on the risk of lung can-
cer based on a large-scale cohort. Our study can deepen 
the understanding on potential metabolic mechanisms of 
lung cancer and help to identify high-risk individuals that 
might benefit from lung cancer screening.

Inflammation predisposes the development of cancer 
and accelerates all stages of tumorigenesis [32, 33], with 

glycoprotein acetyls being a representative biomarker. 
Our study found a strong positive association of glyco-
protein acetyls with lung cancer risk, which is consistent 
with prior studies on glycoprotein acetyls and lung cancer 
risk. A strong association was observed between glyco-
protein acetyls and cardiovascular disease, T2D, COPD, 
and lung cancer in population-based cohort studies in 
Finland and the UK [34, 35]. Our study also observed a 
positive association of  lactate and pyruvate with lung 
cancer risk, though marginally significant. Metabolic 
intermediates of central carbon metabolism were found 
to be signaling molecules that control hypoxic signals 
and stress response [19]. Lactate binds to and stabilizes 
NDRG family member 3 (NDRG3) to enhance Raf-
ERK1/2 signaling and promotion of angiogenesis [36]. 
Moreover, lactate and pyruvate were glycolytic by-prod-
ucts and oncometabolites, which can modulate immune 
cell function, creating an immunosuppressive microen-
vironment that favors tumor progression and initiates or 
sustains tumor growth and metastasis [37–39]. Accord-
ing to prior studies, lactate contributed to central metab-
olism in human NSCLC in  vivo [40, 41], and pyruvate 
was rapidly taken up by malignant tissue [42]; glycolysis-
related metabolites are closely related to the occurrence 
and development of lung cancer.

Albumin was associated with a lower lung cancer 
risk in our study. Albumin, an important component in 
fluid balance, has proven to be closely associated with 
the progression and prognosis of cancer [43, 44]. As an 

Fig. 5 Overlap of metabolic biomarkers for sensitivity analysis. FA, fatty acids; HDL, high-density lipoproteins; IDL, intermediate density lipoproteins; 
LDL, low-density lipoproteins; VLDL, very low-density lipoproteins; XXL, extremely large; XL, very large; L, large; M, medium; S, small; XS, very small; P, 
lipoprotein particle; L, total lipid; PL, phospholipid; C, cholesterol; CE, esterified cholesterol; FC, free cholesterol; TG, triglyceride
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endogenous antioxidant, albumin may reduce cancer 
risk through exerting anticarcinogenic properties [45]. 
Some epidemiological studies found that albumin is posi-
tively associated with lung function, suggesting that peo-
ple with low albumin level may have poor lung function 
[46], which is opposite to glycoprotein acetyls [35]. The 
association between albumin and lung cancer risk may 
also reflect systemic inflammation [47]. Amino acids are 
regulators of cancer stem cells. Low valine to isoleucine/
leucine ratio, or BCAA imbalance, slows the formation of 
hematopoietic stem cells [48]. Valine also showed a nega-
tive association with lung cancer risk in our study, but a 
positive association was found with squamous cell lung 
cancer in another study [49]. The association between 
valine and lung cancer risk was inconsistent and should 
be further studied.

Lipids, which serve as energy resources and compo-
nents of the cell membrane, have immunomodulatory 
functions and the potential to influence cancer immunity 
[50]. Our study found most lipoprotein subfractions were 
negatively associated with lung cancer risk, especially 
HDL particles. Both NMR-measured and clinical chem-
istry measured HDL-C were inversely associated with the 
risk of lung cancer [17], which is consistent with previ-
ous studies [14, 51]. HDL could contribute to lung can-
cer carcinogenesis through its role in cholesterol reverse 
transportation, regulating inflammatory and proliferative 
pathways [52]. Meanwhile, recent studies showed that 
both low HDL-C and low apolipoprotein A are associated 
with an increased lung cancer risk [51, 53]. The consist-
ent findings on fatty acids, lipids, and lipoproteins imply 
the potential protective role of these factors.

In our study, fatty acids were observed to be associated 
with a low lung cancer risk. Another study also found 
that polyunsaturated fatty acids exhibited an inverse 
association with lung cancer and showed an additive 
interaction with genetic risk [16], supporting that poly-
unsaturated fatty acids may serve as protective factors 
for lung cancer. Omega-3 fatty acids can modulate epige-
netic events to regulate cellular processes associated with 
carcinogenesis [54]. It has been found that omega-3 fatty 
acids directly upregulates 15-prostaglandin dehydroge-
nase (15-PGDH), which acts as a tumor suppressor in 
lung and colon cancer [55, 56], which is consistent with 
our results. In addition, the electrophilic oxidized deriva-
tives of omega-3 fatty acids regulated catalytic histone 
modification or DNA methylation of enzymes to control 
miRNA expression [57], and docosahexaenoic acid inhib-
its angiogenesis by triggering exosome secretion of miR-
NAs which promotes the expression of angiogenic genes 
in endothelial cells [58], which provides the evidence that 
omega-3 fatty acids and docosahexaenoic acid can lower 
the risk of cancer [59]. Omega-6 fatty acids and linoleic 

acid may possess anti-cancer effects by disrupting the 
cell cycle in the G1 phase, upregulating the protein 
expression of the cell cycle inhibitor p21, and decreas-
ing the expression of cyclins A and D [60]. Recent stud-
ies have demonstrated that linoleic acid has the capacity 
to enhance CD8 + T cell metabolism, prevent exhaustion, 
and stimulate memory-like phenotypes with superior 
effector functions, resulting in greater antitumor potency 
in  vitro and in mouse model [61]. Besides, linoleic acid 
as a biomarker to predict lung cancer has a good perfor-
mance in squamous cell carcinoma and adenocarcinoma 
[62].

Based on the pathway analysis, “linoleic acid metabo-
lism” emerged as the most potential metabolic process 
and remained statistically  significant after FDR adjust-
ment. Recent studies demonstrated that lipid metabolism 
plays an important role in cancer biology by influencing 
cell growth, survival, proliferation, migration, invasion, 
and metastasis [63]. And metabolic alterations in “linoleic 
acid metabolism” metabolic pathways can be observed 
in NSCLC [64, 65]. Changes in lipids in the primary 
tumor microenvironment play a critical role in facilitat-
ing carcinogenesis, escape, and spread, as well as evading 
immune surveillance. Significant enhancements  in  “lin-
oleic acid metabolism” were observed in the lung micro-
biome in mice  with lung cancer [66]. Our pathway 
analyses also showed a possible role of the “starch and 
sucrose metabolism.” Starch and sucrose metabolism 
genes were shown to be highly upregulated in metastatic 
cancer cell lines [67]. In a paper from Yang et al. [68], the 
occurrence of lung squamous cell carcinoma may be reg-
ulated by the genes AMY2B and AMY2A via the “starch 
and sucrose metabolism” pathway. These metabolic path-
ways need to be further verified in experimental studies.

PCA is frequently used in metabolomics analysis 
because it simplifies the complexity of high-dimensional 
data while retaining trends and patterns [69]. The PCs 
aggregated signatures of metabolic biomarkers across 
multiple molecular pathways, representing a large num-
ber of highly correlated metabolic biomarkers. The asso-
ciation of each principal component with lung cancer 
risk is consistent with its major contributor’s metabolic 
biomarkers. The association of individual metabolic bio-
markers with the risk of lung cancer has been maintained 
after reduced dimension, which again demonstrates the 
robustness of our results.

Our study has several strengths. Using an established 
targeted NMR metabolomics platform, with existing 
clinical regulatory approvals, enabled the quantification 
of diverse biomarkers and enhanced the potential clini-
cal relevance [10]. Moreover, high levels of correlation 
between NMR- and standard clinical chemistry-derived 
concentrations of a subset of biomarkers (Additional 
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file 1: Fig. S2) support the validity of the approach [70]. 
Importantly, these associations were robust after control-
ling for a wide range of potential confounders and in a 
series of sensitivity analyses.

Several limitations of this study should be noted. First, 
we used only one single blood sample and did not con-
sider the changes of metabolic biomarkers over time, 
which may overlook the dynamics of metabolic biomark-
ers. Second, blood samples were taken in the non-fasting 
state, and therefore would be subject to greater variabil-
ity in metabolic biomarker concentrations than fasting 
samples. However, our analyses were adjusted for fasting 
time, which should have limited any material impact of 
the use of non-fasting samples on the findings. It is also 
reassuring that in the sensitivity analysis, the results 
were robust when we excluded those with short fasting 
times. Third, in the stratified analyses, null findings were 
observed for non-smokers and those with SCLC, which 
might be partly due to the insufficiency in statistical 
power in these strata. Fourth, pathway analysis cannot be 
conducted for some metabolic biomarkers because they 
could not be mapped in KEGG, which may lead to loss of 
information on some pathways that may impact the lung 
cancer risk.

Conclusions
In this study, 109 metabolic biomarkers were associated 
with the risk of lung cancer. Glycoprotein acetyls had a 
positive association with lung cancer risk while other 
metabolites and lipoprotein subfractions showed nega-
tive associations. Certain metabolites and lipoprotein 
subfractions might be independent risk factors for lung 
cancer. Our findings shed new light on the etiology of 
lung cancer and might be useful in the selection of high-
risk individuals for lung cancer screening.
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