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Abstract 

Background Major depressive disorder (MDD) often presents alongside physical illnesses, such as a high incidence 
of subclinical hypothyroidism (SHypo) in patients, highlighting the common occurrence of these comorbidities. 
Recent research has indicated that the presence of comorbid SHypo in individuals diagnosed with MDD may result 
in notable alterations in both brain structure and function. This study aimed was to investigate the neurological 
mechanisms underlying this co-occurrence using a data-driven approach to analyze brain activity patterns.

Methods Twenty-nine patients diagnosed with MDD without any comorbid conditions (nSHypo-MDD) were 
included in the study, along with 29 MDD patients who also had SHypo (SHypo-MDD), 26 patients with SHypo only, 
and 29 healthy individuals as controls (HCs). Each participant received resting-state functional magnetic resonance 
imaging scans and underwent neuropsychological evaluations.

Results We found significantly altered functional connectivity (FC) within the resting-state networks (RSNs) 
of the ventral and dorsal sensorimotor network (VSMN and DSMN) and occipital pole visual network (PVN) (p < 0.05, 
FDR corrected). A vital interaction effect between SHypo and MDD was detected in the PVN, showing that SHypo-
MDD patients had higher FC values in the left cuneus than nSHypo-MDD patients. Serum-free triiodothyronine 
(FT3) levels in SHypo-MDD patients demonstrated an inverse relationship with FC values of the right supplementary 
motor area (SMA.R) (r = − 0.563, p = 0.003). Furthermore, the FC values in the left cuneus are positively associated 
with the Digit Symbol Substitution Test (DSST) scores (r = 0.507, p = 0.008).

Conclusions Our study reveals significant FC changes in SHypo-MDD patients, particularly in the PVN, VSMN, 
and DSMN, suggesting compensatory mechanisms that mitigate cognitive deficits and highlighting the need for inte-
grated management of SHypo and MDD to improve cognitive outcomes.

Keywords Brain Networks, Subclinical Hypothyroidism, Major depressive disorder

*Correspondence:
Qing Lu
luq@seu.edu.cn
Zhijian Yao
zjyao@njmu.edu.cn
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12916-025-03995-2&domain=pdf


Page 2 of 11Zhao et al. BMC Medicine          (2025) 23:177 

Background
Depression, a leading cause of disability worldwide, 
affects over 332 million individuals and significantly 
impairs quality of life and daily functioning [10]. Major 
depressive disorder (MDD) is a disorder marked by 
episodes of profound sadness, cognitive slowing, and 
decreased ability to engage in physical activities. MDD 
patients often report physical problems and sometimes 
coexist with medical conditions [8]. It is estimated that 
MDD alone, or combined with chronic somatic diseases, 
represents a significant disease burden around the world 
[23, 24]. MDD frequently accompanies a range of physi-
cal conditions, including heart disease, cancer, persistent 
pain, and thyroid issues. Recent studies, including ours, 
have identified a high comorbidity rate between MDD 
and subclinical hypothyroidism (SHypo), which warrants 
our attention.

SHypo is recognized by increased serum thyroid-
stimulating hormone (TSH) levels alongside normal free 
thyroxine (FT4) levels [26]. Although frequently asymp-
tomatic, SHypo is linked to several adverse health effects, 
including cardiovascular disease, abnormal lipid levels, 
cognitive decline, and diminished quality of life [4, 38]. 
Likewise, SHypo has been associated with cognitive dif-
ficulties, such as impairments in attention, memory, and 
executive functioning, caused by the influence of thyroid 
hormones (THs) on the brain through glial cells, impact-
ing neuronal growth, movement, and development [37]. 
Yin et  al. found that individuals with SHypo had nota-
bly slower response times and lower task accuracy, sug-
gesting a decline in attentional abilities [46]. A previous 
task-based fMRI study by Zhu et al. observed decreased 
activation in the bilateral dorsolateral prefrontal cortex 
(DLPFC) during n-back tasks, indicating that individu-
als with SHypo show compromised executive functioning 
(EF) [54]. Our recent study employing voxel-based mor-
phometry (VBM) demonstrated a significant correlation 
between alterations in gray matter volume (GMV) and 
cognitive dysfunction in individuals with MDD comorbid 
with SHypo, underscoring the significance of neuroim-
aging in elucidating the neural mechanisms underlying 
comorbid conditions (Shuai [50, 52]).

Resting-state functional magnetic resonance imag-
ing (rs-fMRI) is a non-invasive method for studying the 
brain’s spontaneous activity while at rest using fMRI 
technology [31]. Past studies utilizing rs-fMRI have found 
that people with SHypo may exhibit difficulties in atten-
tion regulation and decreased connectivity in the brain 
circuitry connecting the prefrontal cortex (PFC) and 
anterior cingulate cortex (ACC) [46]. Our previous study 
using the regional homogeneity (ReHo) technique found 
a link between SHypo in MDD and increased ReHo val-
ues in specific brain regions (S. [50, 52]).

However, traditional analysis methods often focus on 
predefined regions of interest or whole-brain analyses 
that may not capture the complexity of brain network 
alterations. Independent component analysis (ICA) is a 
robust data-driven method for blind source separation, 
which operates without needing any prior assumptions 
about seed regions [35]. A prior study found that changes 
in the inherent resting-state functional connectivity 
(FC) in the sensorimotor network (SMN) and the right 
anterior network (RAN) may be associated with slight 
impairments in motor abilities, working memory, focus, 
and executive functions in people with SHypo [19]. This 
raises the critical question of whether comorbid SHypo 
significantly impacts the FC within brain networks. As 
far as we know, there have been no studies examining this 
in patients with MDD who also have SHypo. Therefore, 
exploring the co-occurrence of the two disorders from a 
network-level view could significantly enhance the cur-
rent neural frameworks concerning patients with multi-
ple conditions.

Using the rs-ICA technique, this research investigated 
the neurological foundation for the simultaneous pres-
ence of SHypo and MDD. We examined the distinct and 
combined effects of SHypo and MDD on the FC in four 
diverse categories of individuals, specifically individu-
als with MDD who have SHypo or do not have SHypo 
(SHypo-MDD or nSHypo-MDD) and individuals without 
MDD who have SHypo or are healthy controls (SHypo 
or HCs). Next, we investigated the connection between 
affected brain areas and clinical and cognitive factors 
within each group. We hypothesize that SHypo-MDD 
patients may demonstrate FC alterations, impairing their 
cognitive abilities.

Methods
The study included 29 patients with MDD but no other 
health conditions (nSHypo-MDD group), as well as 29 
patients with MDD who also had SHypo (SHypo-MDD 
group), enlisted from the Department of Psychiatry at 
the Affiliated Nanjing Brain Hospital of Nanjing Medi-
cal University between July 2019 and February 2021. 
Twenty-six SHypo patients were enrolled in the Depart-
ment of Endocrinology at Nanjing First Hospital. The 
control group consisted of 29 enrolled healthy controls 
(HCs group). All patients diagnosed with MDD met the 
diagnostic criteria outlined in the Diagnostic and Statis-
tical Manual of Mental Disorders, Fifth Edition (DSM-5) 
(Association., 2013). Participants diagnosed with MDD 
were mandated to attain a minimum score of 18 on the 
17-item Hamilton Depression Rating Scale (HDRS). Sub-
jects were required to meet specific criteria, including 
being between 18 and 60 years old, right-handed, of Han 
Chinese descent, and having at least 8 years of education. 
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The exclusion criteria encompassed individuals with 
comorbid mental disorders, neurological symptoms or 
conditions, recent substance abuse or dependence, preg-
nancy or breastfeeding, significant physical illness his-
tory, or contraindications to MRI.

The research protocol received approval from the Eth-
ics Committee of the Affiliated Nanjing Brain Hospital at 
Nanjing Medical University in adherence to the princi-
ples outlined in the Declaration of Helsinki. All partici-
pants provided written informed consent.

Clinical assessments
The participants filled out a self-administered health 
survey that included questions on socioeconomic and 
demographic factors and their self-reported health sta-
tus and lifestyle habits. As part of the psychiatric history 
checklist, critical items like age of onset, number of epi-
sodes, and number of hospitalizations will be recorded. 
The HDRS-17 was used to assess the severity of depres-
sive symptoms. The Hamilton Anxiety Scale (HAMA) 
was used to assess the severity of anxiety. Experienced 
psychiatrists conducted all the assessments.

Neurocognitive assessment
All participants underwent a thorough administration of 
neurocognitive tests. Drawing from previous research, 
the subtests of these assessments were classified into four 
main domains: attention, memory, processing speed, and 
executive function [49, 51, 53]. The Trail Making Test 
(TMT) A was employed to evaluate attention [29]. Mem-
ory function was divided into categories of verbal mem-
ory and visual memory. Participants were assessed on 
their capacity to recall words and images independently 
using the logical memory (LM) and figural memory (FM) 
sections of the Wechsler Memory Scale-Revised (WMS-
R) [41]. Processing speed was assessed using the Digit 
Symbol Substitution Test (DSST) [40]. TMT-B evaluated 
cognitive flexibility to assess executive function, while 
Digit Span Backward (DSB) tested working memory 
[42]. These tests were chosen because of their prior use 
in studies on MDD, demonstrating their practicality [22, 
49, 51, 53].

Serum THs level assessments
Fasting venous blood samples from all participants were 
collected in the early morning. Thyroxine (FT4), triiodo-
thyronine (FT3), and thyroid-stimulating hormone (TSH) 
levels were assessed through electrochemiluminescence 
testing with the Roche Company Cobas E601 automated 
immunoassay. The variability within assays ranged from 3 
to 6%, while the variability between assays ranged from 5 
to 9%. SHypo was identified by elevated serum TSH levels 
and normal FT3 and FT4 concentrations. The laboratory 

reference ranges for TSH were 0.27 to 4.2 mIU/L, while 
the ranges for FT4 were 12 to 22  pmol/L, and for FT3 
were 3.1 to 6.8 pmol/L.

fMRI data acquisition
All participants were scanned with an MRI machine 
with a magnetic field strength of 3.0 Tesla at the Affili-
ated Nanjing Brain Hospital of Nanjing Medical Uni-
versity. Foam pads were used to stabilize the head and 
minimize movement. MRI scans were conducted on 
the same day as blood sample collection to ensure tem-
poral consistency between physiological and imaging 
data. Participants were instructed to close their eyes 
and remain alert during the scan. The anatomic axial 
and echo-planar imaging parameters matched those 
from our prior publications (S. [49–53]). Resting-state 
BOLD-MRI was obtained utilizing conventional func-
tional MRI, employing the gradient-echo and echo-
planar imaging techniques. The parameters were set as 
follows: TR = 3000  ms, TE = 40  ms, FA = 90°, number of 
slices = 32, FOV = 24 × 24  cm2, slice thickness = 4  mm, 
slice gap = 4 mm, matrix size = 64 × 64, in plane voxel res-
olution = 3.75 mm × 3.75 mm, and 133 volumes.

Data preprocessing and independent component analysis
Data with functionality was analyzed utilizing the soft-
ware Statistical Parametric Mapping version 12 (SPM12) 
and RESTplus [16] integrated in the MATLAB tool-
box. Each participant’s initial ten functional volumes 
were excluded to achieve scanner equilibration. Addi-
tional data preprocessing involved correcting slice tim-
ing, addressing head motion, and normalizing spatially. 
Data points with head movement exceeding 2  mm or 2 
degrees were removed from the analysis to prevent any 
potential impact on the results. Afterward, the regres-
sion removed false variances, such as the Friston 24 head 
motion parameters, cerebrospinal fluid (CSF) signals, 
white matter (WM) signals, and linear trends. Frame-
wise displacement was computed for every participant 
based on the model proposed by Jenkinson et  al. [15]. 
Following this, the images underwent spatial normali-
zation to MNI templates. We did not exclude any par-
ticipants from the fMRI analysis because of excessive 
head motion. Afterward, the normalized data under-
went spatial smoothing with a Gaussian kernel of 6 mm 
full-width-at-half-maximum.

The fMRI time series underwent ICA analysis with the 
Group ICA Toolbox (GIFT v4.0c). In our data analysis, 
we performed four fundamental procedures: reducing 
dimensionality, conducting group ICA, post-reconstruc-
tion, and matching independent and network compo-
nents. PCA was used to reduce the dimensionality. The 
Infomax algorithm decomposed all participants’ images 
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into 23 spatially independent components. ICASSO 
enhanced the stability of independent components (ICs) 
by running the algorithm 20 times. The GICA algorithm 
reconstructed spatial maps and time courses for each IC. 
Network components were chosen based on template 
matching and visual examination, explicitly mentioning 
the Yeo template [45].

Statistical analysis
A Multivariate Analysis of Covariance (MANCOVA) was 
performed to assess the differences in thyroid hormone 
levels and cognitive functions, while controlling for age 
and sex. Sex, marital status, and family psychiatric his-
tory were compared using a chi-square test. A compari-
son between HDRS and HAMA scores in SHypo-MDD 
and nSHypo-MDD patients was conducted using a two-
sample t-test. A two-way ANOVA was conducted for the 
neurocognitive tests, controlling for the effects of age and 
sex. Data analysis was conducted with SPSS 19.0, with 
statistical significance defined as p < 0.05.

Using the reconstructed spatial maps of the partici-
pants in each group, we conducted voxel-wise one-sam-
ple t-tests to analyze functional connectivity within the 
chosen ICN (p < 0.05, FDR corrected). In each group, the 
masks of the networks were created, and the statistical 
range for each network was calculated from the combi-
nation of the four groups. A two-way ANOVA was con-
ducted using SPM12 to analyze the connectivity within 
each ICN, with SHypo and MDD as independent vari-
ables and age, gender, and years of education as covari-
ates. For every analysis, we utilized a corrected threshold 
of p < 0.05 for the entire brain at the cluster level and a 
threshold of p < 0.001 (uncorrected) for forming clusters. 
Regions of interest (ROIs) were identified as brain areas 
showing significant main effects and interactions.

A partial correlation analysis was conducted to exam-
ine potential clinical relevance. In this portion, masks 
were recognized as brain areas that displayed nota-
ble variances across the four categories. Changes in FC 
observed in the masks were associated with THs and 
cognitive measures while accounting for age, gender, and 
years of education.

Results
Demographic and cognitive characteristics
Essential demographic and clinical characteristics of 
nSHypo-MDD, SHypo-MDD, SHypo, and HCs were 
summarized in Table  1. Significant differences were 
observed among the four groups in FT4 levels, TSH lev-
els, TMT-A, DSST, and DSB scores (p < 0.05). A signifi-
cant difference in HAMA scores (p < 0.05) was observed 
between the SHypo-MDD and nSHypo-MDD groups, 
while no significant difference was found in HDRS scores 

(p > 0.05) (see Table  1). The main effects of MDD were 
observed in attention, processing speed, cognitive flex-
ibility, and working memory, while the main effect of 
SHypo was found in attention. The interaction was only 
found in processing speed (see Table 2).

Intranetwork connectivity analysis
Seven independent components (ICs) were identified as 
the five RSNs among the 23 components. The RSNs pro-
duced in Fig. 1 consist of ventral and dorsal sensorimotor 
network (VSMN and DSMN), occipital pole visual net-
work (PVN), default mode network (DMN), left and right 
frontoparietal network (LFPN and RFPN), and dorsal 
attention network (DAN) (p < 0.05, FDR corrected).

Significant changes in FC were noted in the PVN, 
VSMN, and DSMN across the four groups: nSHypo-
MDD, SHypo-MDD, SHypo, and HCs (voxel-level 
p < 0.001, cluster-level p < 0.05, FDR corrected). Specifi-
cally, SHypo demonstrated significant main effects on FC 
within the VSMN and DSMN (voxel-level p < 0.001, clus-
ter-level p < 0.05, FDR corrected). Compared to nSHypo-
MDD patients, SHypo-MDD patients exhibited increased 
FC in the left postcentral and the right supplementary 
motor area (SMA.R) (voxel-level p < 0.001, cluster-level 
p < 0.05, FDR corrected).

Furthermore, a significant interaction effect between 
SHypo and MDD was identified in the PVN, as shown 
in Fig.  2 and detailed in Table  2. SHypo-MDD patients 
exhibited significantly increased FC values in the left 
cuneus compared to nSHypo-MDD patients (voxel-level 
p < 0.001, cluster-level p < 0.05, FDR corrected). No sig-
nificant main effects of MDD were observed in any other 
comparison (voxel-level p < 0.001, cluster-level p < 0.05, 
FDR corrected).

Clinical correlations
Serum FT3 levels in SHypo-MDD patients exhibited an 
inverse relationship with the FC values of the SMA.R (r = 
− 0.563, p = 0.003). Moreover, the fractional anisotropy 
values of the left cuneus showed a positive correlation 
with the DSST scores (r = 0.507, p = 0.008) (Fig.  3 and 
Table 3).

Discussion
This study is among the first to identify distinct FC 
patterns in SHypo-MDD patients using rs-ICA. The 
observed increases in FC within the left cuneus and 
SMA.R highlight specific compensatory neural mecha-
nisms that may distinguish SHypo-MDD from other 
MDD subtypes, advancing our understanding of their 
comorbidity at the network level. Notably, FC in the left 
cuneus was strongly correlated with information pro-
cessing speed. At the same time, serum FT3 levels were 
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inversely associated with FC in the SMA.R. These find-
ings suggest that SHypo-MDD patients may rely on 
neural compensation to mitigate the neurocognitive 
impairments associated with SHypo.

Recent extensive cross-sectional research has found 
that people with a diagnosis of MDD and comorbid 
SHypo exhibit distinct characteristics, such as increased 
body mass index (BMI) [49, 51, 53], metabolic dys-
regulation [27], heightened anxiety symptoms [43], and 
increased susceptibility to suicidal behaviors [36]. The 
findings of our study may enhance the comprehension 
of the clinical features of patients with multiple health 
conditions. We observed that SHypo-MDD patients 
had higher HAMA scores than the nSHypo-MDD 
group, consistent with prior research [21, 43]. A differ-
ent research study discovered that increased levels of 
TSH in the blood were linked to higher anxiety levels in 

people with MDD [44]. Individuals diagnosed with MDD 
often mention feelings of unease and physical symptoms, 
which can also be present in various mental and physi-
cal disorders, including SHypo [3, 5]. THs can affect the 
brain and autonomic nervous system, linking SHypo to 
anxiety and physical symptoms [11]. THs also can regu-
late mood and brain development by acting on limbic 
system receptors and influencing hippocampal BDNF 
levels and serotonin signaling [6, 28, 30]. The study sug-
gests that SHypo may exacerbate anxiety in people with 
MDD, leading to more severe symptoms. Addressing 
SHypo could help manage MDD and its symptoms. Pre-
vious research has shown that treating SHypo with lev-
othyroxine can improve mood, cognitive abilities, and 
quality of life in patients with MDD [3, 48].

While cognitive impairments are a well-established fea-
ture of MDD, as demonstrated in prior studies [20, 34], 

Table 1 Participant demographics and clinical characteristics of the study participants

MDD Major depressive disorder, nSHypo not comorbid with subclinical hypothyroidism, HCs Healthy controls, FT3 Free triiodothyronine, FT4 Free thyroxine, TSH 
Thyroid-stimulating hormone, HAMD Hamilton Rating Scale for Depression, HAMA Hamilton Rating Scale for Anxiety, TMT-A Trail Making Test A, DSST Digital Symbol 
Substitution Test, WMS-LM Logical memory subset of the Wechsler Memory Scale, WMS-FM Figural memory subset of the Wechsler Memory Scale, TMT-B Trail Making 
Test B, DSB Digit Span Backward; comparisons were conducted using MANCOVA tests (F), t-tests (t), and chi-squared tests (χ2). 0 = drug naive, 1 = under medication. 
*p < 0.05

Items nSHypo-MDD SHypo-MDD SHypo HCs F/χ2/t p
n = 29 n = 29 n = 26 n = 29

Age, years 31.6 ± 10.5 33.6 ± 11.8 34.8 ± 12.7 30.4 ± 7.1 0.950 0.419

Gender, male/female 10/19 7/22 6/20 4/25 3.426 0.331

Education, years 14.2 ± 2.2 14.1 ± 2.5 14.4 ± 2.0 15.0 ± 2.3 0.995 0.398

Married, n (%) 62.1% 75.9% 53.8% 58.6% 3.235 0.357

Family history of mental illness (Y/N) 8/21 10/19 NA NA 0.322 0.570

Duration of illness (years) 3.2 ± 1.5 4.1 ± 2.0 NA NA 1.203 0.275

Medication status (1/0) 12/17 18/11 NA NA 2.765 0.065

Medication types

 SSRIs 7 (58.3%) 13 (72.5%) NA NA 0.625 0.429

 SNRIs 5 (41.7%) 5 (27.8%) NA NA NA NA

 HAMD scores 22.1 ± 4.7 23.0 ± 4.0 NA NA  − 0.727 0.470

 HAMA scores 13.1 ± 5.6 16.5 ± 7.8 NA NA  − 2.351 0.022*

 FT3 (pmol/L) 5.2 ± 2.7 4.8 ± 1.1 4.70 ± 0.5 4.9 ± 0.9 0.665 0.046*

 FT4 (pmol/L) 16.8 ± 3.0 15.5 ± 3.7 14.7 ± 2.6 16.4 ± 1.7 2.956 0.031*

 TSH (mIU/L) 1.9 ± 0.9 6.1 ± 1.9 7.7 ± 2.8 2.4 ± 0.9 76.666  < 0.001*

Attention

 TMT-A 36.5 ± 12.4 43.7 ± 16.0 37.4 ± 11.1 32.5 ± 8.2 4.154 0.001*

Processing speed

 DSST 48.9 ± 7.1 51.9 ± 12.6 52.2 ± 8.8 60.0 ± 7.8 5.731 0.001*

Verbal memory

 WMS-LM 9.9 ± 2.6 10.1 ± 2.7 10.3 ± 2.6 10.5 ± 2.7 0.299 0.340

Visual memory

 WMS-FM 14.9 ± 2.0 14.6 ± 3.2 15.5 ± 2.7 15.6 ± 2.4 1.044 0.003*

Cognitive flexibility

 TMT-B 61.0 ± 22.0 62.0 ± 31.6 52.0 ± 15.3 51.6 ± 15.4 1.786 0.001*

Working memory

 DSB 6.6 ± 1.2 6.2 ± 1.6 6.7 ± 1.3 7.4 ± 1.2 4.341 0.001*
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Table 2 Results of two-way ANOVA for neurocognitive characteristics

TMT-A Trail Making Test A, DSST Digital Symbol Substitution Test, WMS-LM Logical memory subset of the Wechsler Memory Scale, WMS-FM Figural memory subset of 
the Wechsler Memory Scale, TMT-B Trail Making Test B, DSB Digit Span Backward. *p < 0.05

Items Interaction Main effects

Diagnosis*SHypo Diagnosis SHypo

F Sig F Sig F Sig

Attention

 TMT-A 0.926 0.338 5.416 0.022* 4.495 0.036*

Processing speed

 DSST 8.050 0.005* 10.316 0.002* 0.860 0.356

Verbal memory

 WMS-LM 0.168 0.683 0.721 0.398 0.093 0.761

Visual memory

 WMS-FM 0.254 0.616 2.806 0.097 0.023 0.879

Cognitive flexibility

 TMT-B 0.165 0.685 5.637 0.019* 0.235 0.629

Working memory

 DSB 0.337 0.563 6.523 0.012* 3.282 0.073

Fig. 1 Spatial maps of PVN, VSMN, DSMN, DMN, RPFN, DAN, and LPFN in the four groups (p < 0.05, FDR corrected)



Page 7 of 11Zhao et al. BMC Medicine          (2025) 23:177  

Fig. 2 Significant interaction effects in the left cuneus (a). Significant main effect of SHypo in the left postcentral gyrus (b), right supplementary 
motor area (c). SMA supplementary motor area

Fig. 3 The partial correlation between serum FT3 levels (X-axis) and the FC value of the SMA.R (Y-axis) in SHypo-MDD patients (A), the partial 
correlation between the FC value of the left cuneus (X-axis) and the DSST scores (Y-axis) in SHypo-MDD patients (B)
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our findings contribute additional evidence by isolating 
the specific effects on attention, processing speed, cogni-
tive flexibility, and working memory were affected. These 
results reinforce that MDD-associated cognitive deficits 
significantly impact daily functioning and highlight the 
importance of addressing these impairments in treat-
ment strategies.

Moreover, the primary impacts of SHypo were 
observed in attention and working memory, potentially 
linked to the condition itself. Cognitive impairment asso-
ciated with SHypo commonly manifests within a broader 
psychopathological framework, including challenges 
with concentration, mood fluctuations, and executive 
functioning. A study found that individuals with SHypo 
had slower reaction times and lower accuracy in perfor-
mance, suggesting a decline in attentional abilities [46]. 
A recent study has discovered that individuals with thy-
roid dysfunction exhibit deficiencies in their alerting 
networks, as demonstrated by the attention network test 
[47]. Moreover, Zhu et al. observed decreased activation 
in the bilateral DLPFC during n-back tasks using fMRI, 
indicating that SHypo patients showed compromised 
executive function [54].

Our study identified significant main effects of SHypo 
in the VSMN and DSMN among the four groups. In 
particular, SHypo-MDD individuals showed higher FC 
values in the left postcentral gyrus and the SMA.R than 
nSHypo-MDD individuals. The results align with prior 
research emphasizing the impact of SHypo on chang-
ing the connectivity of brain networks. For instance, 
SHypo has been associated with disrupted connectiv-
ity in networks responsible for sensory processing and 
motor control, which can exacerbate depressive symp-
toms and cognitive deficits [19, 46]. The postcentral 
gyrus, involved in processing bodily sensations, might 
play a role in the somatic symptoms of anxiety observed 
in SHypo-MDD patients [14]. Our earlier study discov-
ered increased regional homogeneity (ReHo) levels in the 
left postcentral gyrus of SHypo-MDD individuals, indi-
cating improved local coordination of neural activity (S. 

[50, 52]). This increased activity in the postcentral gyrus 
may also contribute to the high anxiety levels observed in 
these patients, as the region processes bodily sensations, 
leading to heightened awareness and sensitivity to these 
sensations, which is a hallmark of anxiety symptoms [18].

The SMA is crucial in planning and coordinating vol-
untary movements and in higher-order motor control 
and cognitive processes related to movement [25]. The 
increased FC in the SMA.R observed in SHypo-MDD 
patients indicates that this area might try to make up for 
impairments resulting from the combination of SHypo 
and MDD, potentially trying to preserve motor and 
cognitive abilities despite the underlying disturbances. 
Furthermore, it was discovered that serum FT3 levels 
in patients with SHypo-MDD were inversely correlated 
with the FC values of the right SMA.R. FT3, the bioactive 
form of thyroid hormone, plays a vital role in control-
ling brain metabolism and neuroplasticity. Although few 
genes in adult brain tissue respond to THs, they influence 
the brain’s structure and function [17]. The SMN, encom-
passing regions involved in processing and integrating 
sensory and motor information, is essential for execut-
ing coordinated movements and maintaining motor skills 
[7, 33]. Interferences in the SMN can significantly affect 
a person’s capacity to complete daily activities and might 
play a role in the overall symptoms seen in SHypo-MDD 
individuals. The changes in SMN connectivity, especially 
the higher FC in the SMA.R, demonstrate how the net-
work is affected by TH imbalances and how they may 
worsen motor and cognitive symptoms.

Moreover, the significant interaction effect between 
SHypo and MDD on DSST scores underscores the com-
plex interplay between thyroid function and depres-
sive symptoms on cognitive performance. The DSST 
scores were significantly lower in SHypo vs HCs, indi-
cating pronounced cognitive impairments. However, 
in SHypo-MDD vs nSHypo patients, this effect was less 
pronounced, suggesting potential compensatory mecha-
nisms at play. Moreover, there was a notable interac-
tion effect between SHypo and MDD in the PVN, where 

Table 3 Interaction and main effects of intranetwork connectivity changes among the four groups

x, y, and z are the coordinates of primary peak locations in the MNI space; T values, statistical value of peak voxel showing FC differences among the four groups; L, left; 
R, right; a, the t statistical value.

Peak location Hemisphere Cluster size (voxels) Peak MNI coordinates T values

x y z

Main effect of SHypo
 Postcentral L 31  − 60  − 15 33 4.73a

 Supplementary motor area R 60 9  − 12 63 4.40a

Interaction
 Cuneus_L L 33  − 9  − 87 36 4.67a
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SHypo-MDD patients showed higher FC values in the 
left cuneus compared to nSHypo-MDD patients, and 
these values were positively correlated with DSST scores. 
The cuneus within the occipital lobe is essential in visual 
and cognitive functions such as attention and spatial pro-
cessing [2, 13]. The increased FC in the cuneus on the 
left side seen in patients with SHypo and MDD indicates 
potential compensatory processes to address cognitive 
impairments linked to both conditions.

Moreover, the positive association between cuneus FC 
values and DSST scores indicates that enhanced visual 
network connectivity supports cognitive performance. 
This observed interaction effect may suggest a compen-
satory neural mechanism in which the cuneus augments 
its connectivity to counteract the detrimental cognitive 
effects of SHypo and MDD. The cuneus appears to sup-
port cognitive function through heightened involvement 
in visual and spatial processing tasks, as indicated by 
performance on the DSST. This adaptive increase in con-
nectivity likely signifies the brain’s endeavor to uphold 
cognitive abilities in the face of the combined influence of 
SHypo and MDD.

Limitation
This study had numerous constraints. The study 
employed a cross-sectional approach, capturing a brief 
moment to assess the patient’s condition. As a result, it 
precluded the examination of any possible changes in the 
patient’s condition over a while. Even after adjusting for 
age, gender, and education as factors, unmeasured varia-
bles may still potentially affect the outcomes. Subsequent 
studies may benefit from investigating additional covari-
ates or utilizing more sophisticated statistical techniques 
to mitigate this limitation. Without assessing the treat-
ment’s effect on the patient’s conditions, it is uncertain 
if the differences between the groups are due to SHypo 
or other factors. The study only included individuals with 
SHypo, so the findings may not apply to those with severe 
hypothyroidism. Another limitation of this study is the 
absence of BMI data, which prevented us from account-
ing for its potential influence on TSH levels. Prior stud-
ies have shown significant associations between BMI and 
TSH, suggesting BMI could be a confounding factor [32, 
39].

Additionally, while we discussed increased suscepti-
bility to suicidal behaviors in SHypo-MDD patients, the 
lack of Suicide Severity Index (SSI) data limited our abil-
ity to analyze its relationship with brain functional con-
nectivity. Future studies should incorporate BMI and SSI 
data to enhance the robustness and depth of findings. 
Finally, antidepressants and thyroid hormone medica-
tions influence cognitive function and brain connectiv-
ity [9, 12]. While medication status was recorded in our 

study, the small sample size limited our ability to perform 
subgroup analyses based on specific medication types 
or dosages. This represents a limitation, as the poten-
tial impact of these medications on our findings cannot 
be excluded. Future research should explore the specific 
effects of these medications on brain networks in comor-
bid SHypo-MDD patients.

Conclusions
In conclusion, our study highlights significant FC 
changes in SHypo-MDD patients, particularly in the 
PVN, VSMN, and DSMN. Increased FC in the left cuneus 
was associated with better cognitive performance, sug-
gesting compensatory mechanisms mitigating cognitive 
deficits. These findings underscore the complex interplay 
between SHypo and MDD, emphasizing the need for 
integrated management of SHypo and MDD comorbidity 
to improve cognitive outcomes. Future research should 
further explore these neural compensatory processes and 
their potential therapeutic implications.
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