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Abstract 

Background The aim of our study was to determine whether the application of machine learning could predict 
PASC by using diagnoses from primary care and prescribed medication 1 year prior to PASC diagnosis.

Methods This population-based case–control study included subjects aged 18–65 years from Sweden. Stochastic 
gradient boosting was used to develop a predictive model using diagnoses received in primary care, hospitaliza-
tion due to acute COVID- 19, and prescribed medication. The variables with normalized relative influence (NRI) ≥ 1% 
showed were considered predictive. Odds ratios of marginal effects  (ORME) were calculated.

Results The study included 47,568 PASC cases and controls. More females (n = 5113) than males (n = 2815) were 
diagnosed with PASC. Key predictive factors identified in both sexes included prior hospitalization due to acute 
COVID- 19 (NRI 16.1%,  ORME 18.8 for females; NRI 41.7%,  ORME 31.6 for males), malaise and fatigue (NRI 14.5%,  ORME 
4.6 for females; NRI 11.5%,  ORME 7.9 for males), and post-viral and related fatigue syndromes (NRI 10.1%,  ORME 21.1 
for females; NRI 6.4%,  ORME 28.4 for males).

Conclusions Machine learning can predict PASC based on previous diagnoses and medications. Use of this AI 
method could support diagnostics of PASC in primary care and provide insight into PASC etiology.
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Background
Coronavirus disease 2019 (COVID- 19), caused by the 
severe acute respiratory syndrome coronavirus 2 (SARS-
CoV- 2), caused a global emergency from 2020 to 2022. 
Although the widespread outbreak subsided in 2022, 
infections continue to occur [1]. The majority of those 
infected recover, but some individuals experience persis-
tent symptoms known as post-acute sequelae of COVID- 
19 (PASC). The World Health Organization defines PASC 
as illness that occurs within 3 months of COVID- 19 
infection and cannot be explained by alternative diagno-
ses [2]. PASC is characterized by a wide range of symp-
toms. It can significantly impair daily functioning and is 
currently a common cause of sick leave [3–6]. At the time 
being, there are no objective diagnostic tests or accessible 
biomarkers for the condition, and the diagnosis is based 
on organ dysfunction, various symptoms and their dura-
tion. Nor has the pathophysiology of PASC been clearly 
elucidated [7, 8]. Finding diagnostic tools and under-
standing the etiology of the condition is a challenge; such 
developments might potentially improve management 
and outcomes for those affected.

There is growing evidence indicating that females have 
a higher risk of developing PASC compared to males 
[9, 10]. Other identified risk factors for PASC include 
belonging to certain demographic groups (e.g., females 
aged 35–50 years and socioeconomically deprived indi-
viduals), having pre-existing health conditions, such as 
obesity and cardiovascular disease, experience of more 
severe acute illness, and being unvaccinated [9, 10]. 
These risk factors have mainly been based on follow-up 
studies of hospitalized patients [11, 12] and questionnaire 
data [13–16]. Epidemiological studies on PASC are diffi-
cult to interpret and combine, because inclusion criteria, 
diagnostic criteria, and methodologies vary [10]. A Swed-
ish study based on register data from secondary care 
found that symptoms of dyspnea and fatigue, and abnor-
mal pulmonary imaging or findings, were associated with 
a PASC diagnosis [17]. Research to identify subtypes of 
PASC has yielded variable results thus far [4, 18]. Little 
is known about individuals who have developed PASC 
and were not hospitalized, were only in contact with pri-
mary care, or were not even in contact with healthcare in 
regard to COVID- 19.

Recently, machine learning methods have been applied 
to structure large amounts of patient data from multiple 
sources, improving the identification of chronic diseases, 
including new-onset diabetes [19], cardiovascular disease 
[20–22] and cancer [23, 24]. In the COVID- 19 context, 
machine learning models have been tested to describe 
the nature of PASC in terms of demographic features, 
symptom severity, and duration [25, 26]. A few previous 
studies have used machine learning to predict risk factors 

associated with PASC [27, 28]. For example, two studies 
demonstrated that the majority of individuals with PASC 
were female, with severe acute COVID- 19 and comor-
bidities including depression, type 2 diabetes, chronic 
kidney disease, and chronic pulmonary disease [27, 28]. 
In the context of PASC, machine learning outperforms 
traditional statistical models when predictive accuracy 
is the main goal because it can capture non-linear rela-
tionships and complex interactions between variables. 
Machine learning uses adaptive complex relationship 
through algorithms in our case thousands of decision 
trees, that perform better than variables in regression 
models that often have problems with collinearity [25].

Early studies during the pandemic predominantly used 
traditional statistics, such as logistic regression to iden-
tify predictors and risk factors of PASC [29]. Although, 
logistic regression is better for interpreting and under-
standing a hypothetical relationship that may be causal, 
introduces potential biases due to its simplicity, limited 
ability to capture complex interactions when the num-
ber of variables increase, and challenges in handling 
missing data [25, 30].These shortcomings are particu-
larly significant for PASC, a condition with heterogene-
ous and overlapping symptoms. In contrast, machine 
learning demonstrates robust performance by leverag-
ing data-driven feature selection and capturing non-lin-
ear relationships, enabling robust modeling of complex 
interactions among predictors [25, 30] underscored the 
potential of machine learning to identify novel, unex-
pected predictors in multifaceted conditions like PASC, 
where traditional models may falter. However, despite 
these advantages, the clinical relevance of machine learn-
ing for PASC remains underexplored [26].

Our study builds on prior research by applying stochas-
tic gradient boosting (SGB), a machine learning method 
well-suited for analyzing high-dimensional data and 
identifying significant predictors. While earlier studies 
have predominantly focused on hospitalized populations 
or secondary care data, our work incorporates primary 
care diagnoses and prescription medications, offer-
ing a broader perspective on PASC predictors [25]. This 
approach highlights the potential of machine learning in 
diverse healthcare settings and may provide insights into 
the complex nature and potential drivers of PASC.

One of the machine learning-methods that can be 
used to predict medical conditions is stochastic gradi-
ent boosting (SGB) [25]. This technique is well-suited for 
analyzing high-dimensional datasets, as it can incorpo-
rate numerous variables while capturing complex, non-
linear interactions among predictors. Unlike traditional 
statistical models, such as logistic regression, which 
often rely on linear assumptions and struggle with multi-
collinearity or missing data, SGB is robust against these 
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limitations. It employs iterative learning to minimize 
errors and improve prediction accuracy by combining 
the strengths of multiple weak learners (decision trees).

Moreover, SGB offers the capability to rank variables by 
their predictive importance, enabling a nuanced under-
standing of which factors contribute most to the out-
come. This attribute is especially critical in multifaceted 
conditions like PASC, where predictors may interact in 
unexpected ways. Previous applications of SGB in our 
research demonstrated its effectiveness in identifying risk 
factors for chronic diseases, including colorectal cancer 
[23, 31] and diabetes [19]. These studies underline the 
suitability of SGB for modeling complex relationships in 
healthcare data, making it an ideal choice for exploring 
PASC predictors using primary care data and prescrip-
tion history.

Given this background and knowledge gaps, we sought 
to determine whether the application of a machine learn-
ing model, SGB, could predict risk factors of PASC diag-
nosis. The model included all diagnoses from primary 
healthcare (PHC) consultations and dispensed prescribed 
medication during the year before PASC diagnosis. Pre-
vious hospitalization due to acute COVID- 19 before 
PASC diagnosis was also used in the model. The VAL 
database from Region Stockholm, which encompasses 
register data from primary care settings, was thought to 
be suitable. We hypothesized that this machine learning 
tool could be used as diagnostic support in primary care 
settings and identify predictors that could potentially 
play a role in the etiology of PASC.

Methods
Study design
This population-based case–control study encompassed 
subjects 18–65 years old who were registered at PHC 
centers (PHCCs) in the Stockholm Region in Sweden. 
The Stockholm Region is the largest metropolitan area in 
Sweden and has a total population of 2.5 million residents 
[32]. Register data for this study were gathered from the 
VAL database, which includes all registered diagnoses 
based on the International Classification of Diseases, 
Tenth Revision (ICD- 10), and all dispensed prescription 
drugs based on their Anatomical Therapeutic Chemical 
(ATC) code [33].

Study population
The study cases included all individuals who had received 
the diagnosis post-COVID condition, unspecified (PASC, 
ICD- 10: U09.9) in any healthcare setting between 2020 
and 2022. Each case was matched by age and sex with up 
to five controls who had not been diagnosed with PASC 
during the study period. Data on all diagnoses from phy-
sician consultations at PHCCs in Region Stockholm and 

dispensed prescribed medications were collected. We 
used prescribed medication as a proxy for chronic con-
ditions. Hospitalization due to COVID- 19 before PASC 
diagnosis was also included.

Subjects who did not seek healthcare during the study 
period were excluded because they lacked data on visits 
and diagnoses, which are essential variables for the analy-
sis. Including such individuals would not allow for mean-
ingful comparisons between those with and without 
COVID- 19, as their absence from the healthcare system 
renders them non-contributory to predictive modeling. 
While we recognize that this exclusion introduces selec-
tion bias and limits the generalizability of our findings to 
those who engage with healthcare services, it was a nec-
essary step to ensure the study’s objectives could be met. 
Future studies incorporating community-level data or 
self-reported health metrics could address this limitation 
and provide a different view of the population.

It was assumed that most of the population in Region 
Stockholm and the individuals in this study had had a 
COVID- 19 infection and were vaccinated for COVID- 
19. Therefore, the diagnoses including COVID- 19 
(ICD- 10: U07, U08), immunization against COVID- 19 
(ICD- 10: U11) and adverse effects of COVID- 19 vac-
cines (ICD- 10: U12) were not included as predictors.

Variables
We collected age at PASC diagnosis, sex, diagnoses (ICD-
10 codes) from PHCCs, and dispensed prescribed medi-
cations reported during the 12 months prior to the index 
date (PASC diagnosis date). ICD codes for chronic dis-
eases and conditions representing similar clinical features 
were merged into common clinical groups in accordance 
with previous studies (for further information see Addi-
tional File: Table  1). All other ICD codes were used as 
three-character codes, except Postviral fatigue, ICD code 
G93.3, which was deemed to have particular clinical rel-
evance. It was therefore used as a four-character code, 
see Additional File: Table 1. A similar approach was used 
for ATC codes. All ATC-codes were one letter and two 

Table 1 Demographic characteristics of PASC cases and controls

PASC, post-acute sequelae of COVID- 19

Characteristic PASC
(n = 7928)

Controls
(n = 39,640)

Sex, n
 Male 2815 14,075

 Female 5113 25,565

Age, years, mean

 Male 48 49

 Female 47 47
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digits, and to distinguish medications of particular inter-
est, they were in higher resolution, see Additional File: 
Table 2.

Statistical methods
This study used the SGB technique for data analysis, an 
effective form of AI formerly utilized in similar research 
[34]. It has previously been applied by our research group 
to analyze factors influencing lung and colorectal cancer 
risk [23], and more recently diabetes and hypertension in 
primary care [19, 35]. The SGB model employed in this 
study is inherently capable of handling missing data by 
incorporating them as a separate category in the model. 
This feature ensures that individuals with incomplete 
data are not excluded from the analysis. The models were 
developed for males and females separately. For each of 
the two sets of training data, diagnoses and medications 
with at least 50 occurrences were selected. The optimal 
number of trees to use for prediction was estimated using 
tenfold cross-validation to ensure model robustness and 
prevent overfitting. Other hyperparameters, such as 
learning rate, maximum depth, and subsampling rate, 
were chosen based on prior studies by our group [19, 31], 
and validated for this dataset to align with best practices. 
This approach ensures that the parameters were both evi-
dence-based and suitable for the current study context.

In this study, the top 2000 most common diagnoses 
registered in primary care were used for all 47,568 indi-
viduals. All dispensed drugs prescribed in primary and 
secondary care were included in the model. The diagnos-
tic codes issued, and medications prescribed during the 
year before index date were used as predictors. By the 
use of this model, this resulted in 78 diagnoses and 52 

medications for males and 125 diagnoses and 69 medica-
tions for females with at least 50 occurrences.

Next, the dataset was divided by sex, resulting in a 
group of 30,678 females and a group of 16,890 males. 
Applying a training-test approach for each group, we 
created a randomly 48 selected training set for each sub-
dataset. Thus, 70% of the cases (n = 3579 females and n 
=  1964 males) with their matched controls (n = 21,475 
females and n = 11,823 males) were used for training the 
SGB model. The remaining 30% of the cases (n = 1534 
females and n = 851 males) with their controls (n = 9203 
females and  n  =5067 males) were used for evaluating 
the model’s performance. The proportions of individuals 
with PASC were equal in the training and test datasets.

The performances of the final models were evaluated 
using area under the receiver operator characteristics 
(ROC) curve, sensitivity, and specificity. The SGB model 
was then applied to each test dataset to obtain patient-
specific probabilities of being diagnosed with PASC. The 
probability that maximized the sum of sensitivity and 
specificity was used as a cut-off value such that patients 
with a probability higher than this cut-off were classified 
as being diagnosed with PASC. The results are presented 
in a confusion matrix, with the performance of the pre-
diction given by sensitivity and specificity. The ROC 
curve shows the trade-off between true positive rate (sen-
sitivity) and false positive rate (1—specificity) at various 
thresholds. The area under the curve (AUC, ranging from 
0 to 1) summarizes the overall accuracy of the model. An 
AUC of 1 indicates perfect prediction and 0 no better 
than random prediction. These metrics provide valuable 
insights into the model’s ability to distinguish between 
positive and negative instances.

From the SGB model, we obtained a ranking of the 
diagnoses most often related to the PASC diagnosis, pre-
sented as the normalized relative influence (NRI) with a 
corresponding odds ratio of marginal effects  (ORME) for 
being diagnosed with PASC. Based on our previous stud-
ies with the machine learning SGB [19, 35], we assumed 
1% NRI as our cut-off threshold for clinically relevant 
diagnoses and prescribed medications. For each diagno-
sis, the odds ratio was calculated using the probability of 
being diagnosed with PASC, obtained by integrating out 
all other variables from the model using the weighted 
tree traversal method [34].

The analyses were performed using R version 4.2.1 [36].

Results
Study population
In total, there were 47,568 study subjects and controls, 
of whom 39,640 were controls matched by age and sex 
with the post-acute sequelae of COVID- 19 (PASC) 
cases. There were more females (n = 5113) than males 

Table 2 Confusion matrix for predicting presence of PASC 
among females and males in the test dataset using the stochastic 
gradient boosting model created from the training dataset

In females, predictions were based on 15,377 trees, with sensitivity 0.774 
and specificity 0.765. In males, predictions were based on 11,221 trees, with 
sensitivity 0.797 and specificity 0.831

PASC, post-acute sequelae of COVID- 19

Observed

Predicted No PASC PASC Total

Females (n = 9203)

 No PASC 5863 347 6210

 PASC 1806 1187 2993

 Total 7669 1534 9203

Males (n = 5067)

 No PASC 3505 173 3678

 PASC 711 678 1398

 Total 4216 851 5067
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(n = 2815) diagnosed with PASC between 2020 and 
2022 (Table 1). The data for PASC cases and controls 
were divided into training and test datasets. The train-
ing dataset for females encompassed 21,475 subjects, 
whereas the test dataset for females encompassed 
9203 subjects. The training and test datasets for males 
included 11,823 and 5067 subjects, respectively.

Predictive ability of the SGB model
The SGB model showed that PASC was predicted with 
relatively good accuracy, with an AUC of 0.804 (95% 
CI: 0.789–0.819) for females and 0.839 (0.820–0.858) 
for males; see Fig. 1A and B, respectively. Thus, there 
were 80% correct predictions in females and 84% in 
males.

The SGB model showed good predictive ability. As 
seen in Table  2, for female patients, the model iden-
tified 5863 out of 6210 females not to have PASC. It 
also correctly identified 1187 out of 2993 females 
with PASC. This means that 95% of the females with 
no PASC diagnoses were correctly identified, and 40% 
of those diagnosed with PASC. For males, the model 
identified 3505 out of 3678 males not to have PASC, 
correctly classifying 95%. Furthermore, it identified 
678 out of 1398 males with PASC, in total 48% of those 
who were diagnosed.

Variable importance
The diagnoses and prescribed medications that were sig-
nificantly predictive in PASC had an NRI ≥ 1% and are 
presented in Table  3 for females and Table  4 for males. 
All variables included in the machine learning model are 
presented in Additional file: Tables 1 and 2. The number 
of variables surpassing the 1% NRI threshold differed 
slightly between sexes, with 17 variables for females and 
15 for males. This reflects differences in the predictive 
relevance of certain diagnoses and prescribed medica-
tions, emphasizing the importance of sex-stratified anal-
yses in understanding PASC,

Among females, 125 diagnoses and 69 medications 
showed an NRI of more than 0%, with 17 of these diag-
noses and drugs combined having a relative influence 
of over 1%. The five diagnoses with the highest NRIs 
were COVID- 19 with inpatient care (hospitalization) at 
41.7%, malaise and fatigue at 14.5%, post-viral and related 
fatigue syndromes at 10.1%, dyspnea at 8.4%, and upper 
respiratory tract infections at 5.9%. top prescribed medi-
cations with the highest NRIs were adrenergics, inhal-
ants and other drugs for obstructive airway diseases, and 
inhalant medicines at 2.8%, and hormonal contraceptives 
for systemic use at 1.3%.

Among males, 78 diagnoses and 52 medications 
showed an NRI above 0%, and 15 of these had a relative 
important influence of over 1%. The five diagnoses with 

Fig. 1 Receiver operator characteristics curve for the optimal stochastic gradient boosting model applied to A females and B males in the test 
dataset. AUC, area under the curve
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the highest NRIs were COVID- 19 with inpatient care at 
41.7%, malaise and fatigue at 11.5%, post-viral and related 
fatigue syndromes at 6.4%, dyspnea at 8.4%, and cough at 

4.1%. The prescribed medications with the highest NRIs 
were adrenergics, inhalants and other drugs for obstruc-
tive airway diseases, and inhalant medicines at 1.5%.

Table 3 The 17 variables with highest NRIs for predicting presence of PASC among females, based on the optimal stochastic gradient 
boosting model with 15,377 trees, together with  ORME during the year before PASC diagnosis

NRI normalized relative influence, PASC post-acute sequelae of COVID- 19, ORME odds ratio for marginal effects, ICD- 10 International Classification of Diseases Tenth 
Revision, ATC  Anatomical Therapeutic Chemical

Females

ICD- 10 or ATC code Description NRI (%) ORME

U071 and U072 COVID- 19—in hospitalized patients 16.1 18.8

R53 Malaise and fatigue 14.5 4.6

G933 Post-viral and related fatigue syndromes 10.1 21.1

R06 Dyspnea 8.4 6.2

J01, J02, J03, J06 and J20 Upper respiratory tract infections 5.9 3.2

R43 Disturbances of smell and taste 4.4 28.9

B34 Viral infection of unspecified site 3.1 3.5

R03 A and R03B (ATC) Adrenergics, inhalants and other drugs for obstructive airway 
diseases, inhalants

2.8 1.8

R00 Tachycardia 2.6 3.0

F43 Reaction to severe stress, and adjustment orders 2.3 2.1

R05 Cough 2.1 2.3

R51 Headache 2.0 2.6

Z86 Personal history of certain other diseases 1.7 5.6

R50 Fever 1.6 4.4

F41 Anxiety disorders 1.6 1.6

G03 A (ATC) Hormonal contraceptives for systemic use 1.3 2.3

Z02 Encounter for administrative examination 1.0 2.2

Table 4 The 15 variables with highest NRIs for predicting presence of PASC among males, based on the optimal stochastic gradient 
boosting model with 11,221 trees, together with  ORME during the year before PASC diagnosis

NRI normalized relative influence, PASC post-acute sequelae of COVID- 19, ORME odds ratio for marginal effects, ICD- 10 International Classification of Diseases Tenth 
Revision, ATC  Anatomical Therapeutic Chemical

Males

ICD- 10 or ATC code Description NRI (%) ORME

U07, U08, U09, U11 and U12 COVID- 19—in hospitalized patients 41.7 31.6

R53 Malaise and fatigue 11.5 7.9

G933 Post-viral and related fatigue syndromes 6.4 28.4

R06 Dyspnea 4.9 6.5

R05 Cough 4.1 4.4

J01, J02, J03, J06 and J20 Upper respiratory tract infections 3.5 3.4

R00 Tachycardia 2.5 5.2

B34 Viral infection of unspecified site 2.1 3.3

R03 A and R03B (ATC) Adrenergics, inhalants and other drugs for obstructive airway 
diseases, inhalants

1.5 1.8

R51 Headache 1.4 3.1

F43 Reaction to severe stress and adjustment orders 1.2 2.6

R05 (ATC) Cough and cold preparations 1.2 2.2

J45 and J46 Asthma 1.1 2.0
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Marginal effects
The results for the sex-stratified statistical models 
showed that the top five diagnoses with the highest NRIs 
had an  ORME above 1. For females, these diagnoses were 
disturbances of smell and taste  (ORME 28.9), post-viral 
and related fatigue syndromes  (ORME 21.1), COVID- 19 
in inpatient care  (ORME 18.8), dyspnea  (ORME 6.2), and 
personal history of other diseases  (ORME 5.6) (Table  3). 
For males, the top five diagnoses were COVID- 19 with 
inpatient care  (ORME 31.6), post-viral and related fatigue 
syndromes  (ORME 28,4), malaise and fatigue  (ORME 
7.9), dyspnea  (ORME 6.5), and tachycardia  (ORME 5.2) 
(Table 4).

Discussion
In the present study, with a large study population of sub-
jects registered at primary health care centers (PHCCs)
s in Region Stockholm, data was analyzed included diag-
noses recorded at PHC consultation and prescribed 
medication from the year before PASC diagnosis. Our 
findings suggest that the machine learning SGB models 
have promising potential for identifying subjects at risk 
of PASC and uncovering associations between various 
factors and PASC. As this is an observational study, these 
results should be interpreted as identifying patterns and 
correlations rather than establishing causal relationships. 
We found that females were at higher risk of being diag-
nosed with PASC than males. Previous hospitalization 
due to acute COVID- 19 was strongly associated with 
an increased risk of PASC in both sexes. Several diag-
noses from primary care physicians were significantly 
linked to higher risk of PASC. These included post-viral 
and related fatigue syndrome, symptom diagnoses, such 
as malaise, fatigue, dyspnea, impaired smell and taste, 
tachycardia, cough and headache, reactions to acute and 
severe stress in both sexes, as well as anxiety in females 
and asthma in males. Among the prescribed medications, 
adrenergic inhalants and other inhalants for obstructive 
airway diseases in both sexes, and hormonal medication 
in females, were also linked to higher risk of PASC.

As we hypothesized, the presented method could be 
applied as a prediction tool for PASC. Our presented 
machine learning model could be clinically relevant, as 
it can support diagnostic of PASC in primary care, as 
long as there are no biomarkers or objective diagnostic 
tests for PASC. Our findings of several PASC predictors 
may provide some insight into PASC etiology, which is 
currently unknown. The model is robust and reproduc-
ible, and when more data sources are identified, it can be 
retrained in further studies.

We found that prior hospitalization due to COVID-
19 was the strongest predictor associated with PASC in 
both sexes. However, a recent meta-analysis suggests 

that association between hospitalization and PASC is 
still inconclusive due to studies including mixed cohorts, 
with both hospitalized and non-hospitalized patients, 
and some not having data on whether individuals were 
treated at intensive care [37]. This discrepancy might be 
attributed to that the meta-analysis using only statisti-
cal linear models, while our analysis allowed us to cap-
ture linear and nonlinear relationships and interactions 
among predictors that are typical for a multifactorial con-
dition like PASC. In fact, follow-up studies of PASC have 
primarily been initiated with hospitalized patients, stat-
ing the risk of PASC increased with the severity of initial 
COVID-19 infection [28, 38, 39]. A meta-analysis showed 
that long hospitalization and having received intensive 
care more than doubled the risk of PASC [40]. Even if the 
association among hospitalized patients is complicated, 
as the studies usually have not considered post-intensive 
care syndrome as a differential diagnosis to PASC [41].

We demonstrated that a symptom diagnosis of malaise 
and fatigue or post-viral fatigue syndrome (ICD-10 
G933), which encompasses myalgic encephalomyelitis/
chronic fatigue syndrome (ME/CFS), were strongly asso-
ciated with the increased the risk of PASC in both sexes. 
PASC and ME/CFS share major symptoms, including 
chronic fatigue. Diagnostics are based on the presence 
and duration of symptoms and exclusion of other causes 
[42]. Previous cross-sectional studies have suggested that 
43–58% of PASC patients meet the ME/CFS diagnostic 
criteria [43–45]. In those studies, ME/CFS and PASC 
were more prevalent in the non-hospitalized female 
population. The underlying mechanism for this observa-
tion is not fully understood but are thought to involve a 
combination of sex-specific factors including stronger 
immune response in females after infection and hormo-
nal influences [45]. The clinical similarities between ME/
CFS and PASC allow us to suggest a multifactorial etiol-
ogy and pathobiology, including a preceding viral illness, 
increase in inflammation cytokines, neuroinflammation, 
mitochondrial dysfunction, and alteration in natural 
killer cell function [42].

We also found that symptom diagnoses, such as dysp-
nea, disturbances in smell and taste, tachycardia, cough, 
and headache, as well as upper respiratory tract infec-
tions, were predictors of PASC in both sexes. Similar 
respiratory symptomatology is well-described in other 
respiratory viral syndromes, including those from severe 
acute respiratory syndrome, respiratory syncytial virus, 
and influenza [46, 47]. Further, SARS-CoV-2 is primar-
ily a respiratory virus, meaning that long-term respira-
tory symptoms are not surprising, and associations have 
been shown in several previous studies [4, 13–15, 48, 49]. 
Other symptoms, including tachycardia and headache, 
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have been reported as symptoms of PASC and are 
included in WHO’s case definition [2].

Furthermore, our results showed an association 
between PASC and reactions to acute and severe stress in 
both sexes, and also anxiety in females. In line with this, 
a large epidemiological study showed that pre-infection 
psychological distress, including depression, anxiety, and 
loneliness, was a risk factor for PASC [50]. Mounting evi-
dence supports the link between psychiatric disorders 
and immune system dysregulation, suggesting that they 
are closely intertwined and possibly power each other in 
a bidirectional loop [51, 52].

Our results showing that females appeared to be at 
greater risk than males of developing PASC, with a ratio 
1.8:1 being consistent with prior research, including 
meta-analyses [38, 53]. Those studies showed that the 
mortality and hospitalization rates due to COVID- 19 
were lower in females than males. It was suggested that 
sociodemographic aspects played a role in sex differ-
ences of persistent symptoms following COVID-19 [47]. 
Female patients are more likely than male patients to seek 
healthcare for both physical and mental symptoms [54]. 
Beyond sociodemographic aspects, biological factors, 
including hormones and immune responses, may also 
influence the higher reported prevalence of PASC among 
females. Female immune systems exhibit stronger innate 
and adaptive responses compared to males, which could 
lead to greater immune activation and a higher likelihood 
of prolonged post-viral symptoms. Sex hormones have 
been shown to modulate immune responses, potentially 
leading to differences in inflammation, autoimmunity, 
and tissue repair following infection [55]. In this study, 
we also demonstrated that prescribed female sex hor-
mones (ATC code G03), including contraceptives and 
hormonal replacement therapy, were associated with an 
increased risk of PASC. Studies on associations between 
hormonal drugs and PASC are scarce. A previous study 
based on a nationwide internet-based survey among 
Swedish women showed that they self-reported feeling 
that access to contraceptives decreased during the pan-
demic and that there was an overall decrease in current 
use of contraceptives compared with pre-pandemic levels 
[56]. Therefore, in light of other results, our findings sug-
gest that receiving female sex hormones might play a role 
in PASC etiology.

Another finding was that adrenergic inhalants and 
other inhalants for obstructive airway diseases were 
associated with PASC. Furthermore, we showed that 
asthma contributed to the prediction of PASC in males, 
but not in females, in concordance with another study 
[57]. In addition, meta-analyses have reported contra-
dictory results regarding susceptibility to COVID-19 in 
patients with asthma [58–60]. There are indications that 

age and severity of disease in asthma affects the outcome 
of COVID-19 [60, 61]. There is a lack of studies on post-
COVID- 19 status in relation to asthma. In a UK-based 
survey in patients with asthma, 10.5% reported COVID- 
19, of these, 56% reported having PASC [62].

In contrast to other researchers, we did not find that 
other chronic diseases—such as obesity, type 2 diabetes, 
chronic obstructive pulmonary disease, or ischemic heart 
diseases—were risk factors for PASC [27, 28, 40, 58]. This 
might be because we based our analysis only on diag-
nostic codes registered during the year before the index 
date, and this was during the pandemic, when many non-
urgent healthcare and follow-up visits were postponed. 
Thus, diagnosing of chronic conditions might have been 
limited. Nor did we see that dispensing of medications 
for these conditions, which we in this study saw as a 
proxy for chronic conditions, was associated with PASC. 
This was observed despite the fact that a Swedish study 
showed that there was an increase in the volume of dis-
pensed medication early in the pandemic, possibly due 
to individuals with chronic disease having decided to dis-
pense extra supplies of medication in case of lockdown 
[63]. Furthermore, in Sweden, a large proportion (70%) of 
the population with chronic disease is diagnosed and fol-
lowed up annually in primary care [64].

The clinical relevance of using SGB, as we did, is that 
it enables analyses of large amounts of complex data and 
therefore identify previously unknown relationships in 
females and males separately. The rationale for dividing 
the population into female and male patients was based 
on known sex differences in PASC presentation and 
symptoms [38, 53]. The model demonstrated strong pre-
dictive performance, accurately identifying the majority 
of patients without PASC.

Although the pandemic has ended, COVID-19 is still 
circulating and the cumulative incidence of PACS is still 
substantial [65]. It is therefore important to continue 
studies on the consequences of COVID-19, in order to 
learn for future outbreaks. This knowledge could poten-
tially assist health care personnel in prioritizing patients 
when allocating limited healthcare resources.

For future directions, integrating this method into 
clinical workflows will require external validation in 
other Swedish and international populations. Addition-
ally, in future studies, incorporating data beyond Febru-
ary 2022 will help assess the model’s robustness across 
different pandemic phases. Future studies should also 
explore potential biomarkers, healthcare utilization, cost-
effectiveness, resource requirements, and practical strat-
egies for integrating such tools into existing healthcare 
systems. Furthermore, from a clinical perspective incor-
porating detailed hospitalization data, such as length of 
stay, use of intensive care, or specific treatments received, 
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would help clarify the relationship between acute illness 
severity and PASC risk.

Strengths and limitations
The main strength of this study is the large size of pop-
ulation-based data from primary care settings, where 
studies are scarce. The study included individuals of dif-
ferent ages and both sexes from both urban and rural 
areas within Region Stockholm, Sweden. The region 
represents a fast growing population of 2.5 million [32], 
amounting to approximately 25% of entire population in 
Sweden [66]. Sweden has a unique infrastructure with 
register databases. However, primary care data are only 
registered locally. Our dataset is unique and included all 
ICD-10 diagnoses recorded by primary care physicians 
from the VAL databases. Unlike previous studies, which 
primarily focused on hospitalized cohorts or secondary 
care data, our work incorporates primary care data and 
prescribed medications, offering a broader perspective 
on PASC predictors. Additionally, we used stochastic 
gradient boosting (SGB), which allows for the inclusion 
of numerous variables and the modeling of complex 
interactions between them. This approach enables the 
identification of both known and novel predictors of 
PASC, such as hormonal medication in female patients, 
which were not highlighted in earlier studies. By focusing 
on primary care data, our methodology provides a more 
comprehensive and nuanced understanding of PASC pre-
dictors, advancing beyond existing approaches that are 
limited to secondary care settings.

Another strength of our study is the use of the SGB 
method, where all included variables, such as diagnoses 
and medications, were incorporated into the model along 
with their interactions with each other. The SGB model 
can be considered as adjusted for hundreds of variables, 
enabling it to account for complex, non-linear relation-
ships and interactions that might act as confounders. 
While we stratified by age and sex, which are known key 
factors in PASC, we recognize that other potential con-
founders—such as socioeconomic status, vaccination sta-
tus, and pre-existing comorbidities—were not explicitly 
adjusted for in this study.

The use of SGB allows the inclusion of individuals 
with missing data, mitigating the impact of exclusion of 
patients with incomplete records. However, as with any 
registry-based study, underreporting of diagnoses or 
healthcare contacts is a potential limitation. For example, 
individuals who only occasionally seek healthcare may 
have fewer registered data points, which could impact 
predictor completeness. Despite this, the robustness of 
the SGB model ensures that the analysis can incorporate 
such cases. Our model demonstrated strong predictive 
performance, in identifying over 90% of patients without 

PASC. Its accuracy in identifying patients with PASC was 
40% of the female and 48% male patients classified at risk 
of PASC actually had PASC, indicating that those identi-
fied by the model are at high risk of PASC. These findings 
highlight the model’s potential for clinical use, while also 
underscoring the need for further refinement.

There are several limitations in this study. One is that 
general practitioners may not document all diagno-
ses, particularly symptom diagnoses, presented during 
healthcare visit [67]. Instead, they may focus on the spe-
cific reasons for each particular visit, which should be 
taken into consideration when interpreting our results. 
Furthermore, conditions such as chronic obstructive 
pulmonary disease and obesity are known to be underdi-
agnosed. Further, some of the diagnoses associated with 
PASC in our study can be difficult to interpret, such as 
ICD code Z86.1: Personal history of COVID-19, which 
was used in Sweden only during the period June 1, 2020 
to December 31, 2021 [68].

Another limitation of our study is that we do not dif-
ferentiate between hospitalized patients and patients 
treated in intensive care. The strong association between 
prior hospitalization due to COVID- 19 and PASC likely 
reflects the heightened risk associated with more severe 
acute illness. However, our inability to differentiate 
between levels of care intensity during hospitalization 
limits our ability to fully interpret this finding.

Furthermore, the data were based on diagnostic codes 
(ICD-10) and prescription drug codes (ATC). We were 
not able to assess some potential confounders that could 
influence PASC predictors including other sociodemo-
graphic factors except for age and sex, self-reported life-
style factors such as smoking habits, symptom severity, 
or the potential impact on quality of life. We did not eval-
uate the impact of vaccines, which are known to play a 
protective role against PASC [40]. Furthermore, the study 
did not assess the effect of therapeutics, such as Paxlovid, 
on the likelihood of PASC diagnosis, nor did we evaluate 
the association with COVID- 19 reinfection or consider 
that the controls could be diagnosed with PASC outside 
the timeframe of this study. This residual confounding 
was mitigated in the study by using SGB modeling, which 
allows for the inclusion of multiple variables and complex 
interactions, improving the model’s ability to account for 
unmeasured confounders.

Another weakness is that no specific ICD- 10 code for 
PASC is available, possibly resulting in variations of usage 
of the diagnostic code U09.9 between physicians and 
healthcare facilities. For example, the highest usage of the 
diagnosis code U09.9 among Swedish metropolitan areas 
was reported in the Region Stockholm, where this study 
was conducted [17]. Thus, there may have been misclas-
sification and underreporting of PASC in other regions 
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of Sweden. As both the diagnosis code and the syndrome 
PASC are novel, the use of the diagnosis will likely have 
evolved during the study period. Clinicians may be more 
likely to report this diagnosis now than at the beginning 
of the study period. Future research should explore these 
acknowledge biases to validate findings and further refine 
predictive models in later cohorts.

Conclusions
This study demonstrated that the SGB model can iden-
tify associations between PASC and registered diagnoses, 
as well as prescribed medications, during the year before 
a PASC diagnosis. Known risk factors, such as previous 
hospitalization due to COVID-19, respiratory, neuro-
logical, and cognitive symptoms, and the use of inhala-
tion medicines in both sexes, as well as asthma in male 
patients, were verified. Additionally, novel predictors, 
such as hormonal medication in female patients, were 
identified and warrant further investigation. While these 
findings highlight the potential of machine learning for 
exploring PASC predictors, the model requires external 
validation and further refinement before it can be consid-
ered for implementation in clinical settings.
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