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Abstract 

Background  Circulating linoleic acid (LA) levels have been reported to be associated with various metabolic out-
comes. However, the role of LA and its interplay with gut microbiota in gestational diabetes mellitus (GDM) remains 
unclear. This study aimed to investigate the longitudinal association between circulating LA levels during pregnancy 
and the risk of GDM, and the potential role of gut microbiota.

Methods  A nested case–control study was conducted within the ongoing Tongji-Huaxi-Shuangliu Birth Cohort 
in Chengdu, China. Blood and fecal samples were collected during early and middle pregnancy from 807 participants. 
GDM was diagnosed in middle pregnancy using the International Association of Diabetes and Pregnancy Study 
Groups criteria. Plasma LA levels were measured using gas chromatography-mass spectrometry, and gut microbiota 
was analyzed through 16S rRNA gene sequencing and shotgun metagenomic sequencing. A two-sample Mendelian 
randomization study was conducted using data from the IEU OpenGWAS database and the FinnGen consortium.

Results  Elevated plasma LA levels were associated with a lower risk of GDM in both early (P for trend = 0.002) 
and middle pregnancy (P for trend = 0.02). Consistently, Mendelian randomization analysis revealed that each unit 
increase in LA was associated with a 16% reduction in GDM risk (odds ratio: 0.84, 95% confidence interval: 0.72, 0.95). 
In early pregnancy, higher plasma LA levels were correlated with higher adiponectin levels (P < 0.001) and lower levels 
of triglycerides (P < 0.001), HbA1c (P = 0.04), and C-peptide (P = 0.04). The LA-accociated microbiota mediated the rela-
tionship between LA and C-peptide (P = 0.01). Additionally, the inverse association between LA and GDM was modi-
fied by Bilophila (P for interaction = 0.03), with a stronger association observed in participants with lower Bilophila 
levels in early pregnancy. Metagenomic analyses further showed that the LA-associated pathway (D-galacturonate 
degradation I) and its key enzyme (EC 4.2.1.7) were associated with metabolic traits.
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Conclusions  Our study provides evidence for an inverse causal association between plasma LA levels during preg-
nancy and GDM risk, which is both mediated and modified by gut microbiota.
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Background
Gestational diabetes mellitus (GDM) is character-
ized by the onset of hyperglycemia during pregnancy 
and poses a significant health challenge worldwide [1]. 
GDM is associated with both short-term and long-
term adverse health effects for mothers and their off-
spring, including obesity, impaired glucose metabolism, 
and cardiovascular disease [1]. With the prevalence of 
GDM increasing dramatically over the past two dec-
ades by more than 30% in numerous countries, there is 
a pressing need to understand the underlying mecha-
nisms of GDM and identify modifiable risk factors [2].

Linoleic acid (LA; 18:2n6), distinguished as a primary 
omega- 6 fatty acid, was extensively investigated for its 
role in metabolic health. Since LA cannot be synthe-
sized in human body and is primarily obtained through 
diet, its circulating levels are a reliable biomarker for 
dietary intake of LA, thus providing a more accurate 
measure than traditional questionnaires [3, 4]. Recent 
studies suggested a relationship between fatty acids, 
particularly LA, and glucose metabolism. Specifically, 
studies have reported an inverse association between 
elevated concentrations of plasma LA and risk of type 
2 diabetes [5–7]. However, the exact role of LA in GDM 
remains unclear, with conflicting results from vari-
ous studies [8–14]. Our previous nested case–control 
study among 1618 pregnant women, conducted within 
two prospective Chinese cohorts, showed an inverse 
association between circulating LA levels in early preg-
nancy and the risk of GDM [9]. Consistently, lower 
levels of LA were observed in GDM women at 18–22 
weeks of pregnancy, as compared to non-GDM con-
trols in a study from India [10]. In contrast, another 
study found that women with GDM showed a high level 
of LA compared to those without GDM even in early 
pregnancy [13]. Moreover, within the NICHD Fetal 
Growth cohort, analyses showed no significant associa-
tions between LA levels at gestational weeks 10–14 and 
15–26, and the risk of GDM [14]. Several factors con-
tribute to these discrepancies, including differences in 
study design, sample size, and population character-
istics. Most studies were cross-sectional or based on 
small sample sizes, which limits their ability to reach 
a reliable conclusion. Furthermore, most prior studies 
focus on single time measurements during pregnancy, 
failing to capture the longitudinal changes in LA levels 
and their potential cumulative effect on GDM risk.

Gut microbiota could interact with the host’s diet for 
maternal health.  Women diagnosed with GDM expe-
rience significant shifts in their gut microbiota dur-
ing pregnancy, typically characterized by a reduction in 
beneficial bacteria and an increase in potentially harm-
ful bacteria [15, 16]. These imbalances tend to evolve 
throughout the entire pregnancy, affecting insulin sensi-
tivity and glucose metabolism [16]. The composition and 
function of the gut microbiota are profoundly shaped by 
the diversity and quality of the host’s diet. The intake of 
dietary fatty acids significantly influences the composi-
tion of gut microbiota in both animal models and humans 
[17]. A previous study showed that a LA-rich diet wors-
ens metabolic responses and exacerbates gut microbiota 
dysbiosis in obese rats with diabetes [18]. However, the 
intricate interplay between LA and the gut microbiota in 
GDM remains an underexplored area.

To bridge this knowledge gap, we utilized data from 
the prospective Tongji-Huaxi-Shuangliu Birth Cohort 
(THSBC) in China to investigate the longitudinal asso-
ciation of plasma LA levels with GDM risk during both 
early and middle pregnancy. Additionally, a two-sample 
Mendelian randomization (MR) approach was applied to 
assess causality between plasma LA levels and GDM risk. 
We also explored the potential role of gut microbiota in 
the relationship between LA and GDM.

Methods
Study design
The THSBC is an ongoing birth cohort to assess risk 
factors and consequences of major maternal and neo-
natal outcomes in Chengdu, China. Pregnant women 
aged 18–40 years were invited to participate when 
they received the first antenatal care (6–15 weeks of 
pregnancy) at Shuangliu Maternal and Child Health 
Hospital. The following women were excluded: (1) 
women who had received infertility treatments such 
as in  vitro fertilization and intrauterine insemina-
tion; (2) women who reported severe chronic or infec-
tious diseases; and (3) women who were unable to or 
refused to complete the baseline questionnaire. A total 
of 6143 pregnant women were recruited in 2017–2019, 
and followed up throughout the pregnancy. GDM 
cases were diagnosed using a 75-g oral glucose toler-
ance test conducted between 24 and 28 weeks of preg-
nancy, based on the criteria set by the International 
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Association of Diabetes in Pregnancy Study Groups: 
fasting glucose ≥ 5.1 mmol/L, 1-h glucose ≥ 10.0 
mmol/L, or 2-h glucose ≥ 8.5 mmol/L [19]. Our study 
was based on available linked data from 3 nested case–
control studies within the THSBC [9, 20, 21]. A total 
of 269 GDM cases were included and matched with 
538 non-GDM controls in a 1:2 ratio, based on mater-
nal age (± 3 years) and gestational age (± 4 weeks). All 
GDM cases or controls did not have pre-existing type 
1 or type 2 diabetes. Blood and fecal samples were col-
lected during both early (10.93 ± 2.18 weeks of gesta-
tion) and middle pregnancy (24.71 ± 1.55 weeks of 
gestation), aliquoted, and stored at − 80 °C for future 
analysis. Among the 807 individuals, 16S rRNA  gene 
sequencing was conducted on fecal samples collected 
during early and mid-pregnancy from 96 matched 
pairs (1:1 ratio), matched by maternal age (± 3 years), 
gestational age (± 3 weeks), and sample collection 
date (± 4 weeks). Additionally, shotgun metagenomic 
sequencing was conducted on 56 matched pairs (1:1 
ratio) with fecal samples from early pregnancy, using 
the same matching criteria. The study design and ana-
lytical framework are illustrated in Fig. 1.

Assessment of plasma LA
Fifty microliters of plasma from fasting blood samples 
was spotted onto Whatman SG81 ion exchange paper, 
air-dried, and washed with acetone to remove neutral 
lipids. Fatty acid methyl esters (FAMEs) were then 
extracted using anhydrous methanol with 1% H2SO4 
at 70 °C for 3 h. The FAMEs were analyzed by gas 
chromatography–mass spectrometry using an Agilent 
7890B GC with a J&W DB- 23 column and an Agilent 
5977B mass spectrometer under electron impact ioni-
zation. LA levels were expressed as a relative weight 
percentage of total FAMEs in each sample, which 
has been widely used in population studies examin-
ing the effects of blood fatty acids [7, 22, 23,  24]. All 
analyses were conducted blindly, with matched case–
control samples processed in the same batch in a ran-
domized order to minimize systematic errors. Quality 
control measures, including procedural blanks and 
quality control samples, were used to monitor assay 

performance across batches. Details on assessment of 
plasma LA can be found in a previous study [9].

16S rRNA gene sequencing for fecal samples
Details on fecal sample collection and 16S rRNA 
gene  sequencing have been provided previously [20]. 
Briefly, DNA was extracted using TIANamp Stool DNA 
kit. Bacterial 16S rRNA gene sequences (V3–V4 region) 
were PCR amplified, followed by a 2-step nested PCR 
to generate community amplicons. These were pooled 
equimolarly to form a barcode-PCR library, quanti-
fied using a Qubit 2.0 fluorometer, and sequenced with 
paired-end reads (300 bp × 2) on the Illumina MiSeq 
platform. Quality control included a standard mixture of 
genomic DNA from various bacterial species and a nega-
tive control. Paired-end reads were denoised, merged via 
the DADA2 pipeline, and classified using a naïve Bayes 
classifier trained on the V3–V4 region of the 99% iden-
tity Greengenes reference database (version 13_8). To 
examine associations between individual microbial genus 
and LA levels, 391 amplicon sequence variants (ASVs) 
with mean relative abundance > 0.01% in at least 10% of 
samples were retained, which were then collapsed into 
67 genera. Relative abundances were arcsine square root 
transformed, followed by a z-score normalization.

Shotgun metagenomic sequencing for fecal samples
Shotgun metagenomic sequencing was performed using 
the methods described previously [21]. Fecal sample col-
lection and DNA extraction followed the same proto-
col as 16S rRNA gene sequencing. Sequencing libraries 
(paired-end, insert size: 350 bp) were prepared using the 
Tn5 DNA Library Prep Kit for Illumina and sequenced 
on the Illumina NovaSeq 6000 platform (read length: 
150 bp). Quality control of the whole-genome shot-
gun sequencing data was performed using KneadData 
(v0.7.2), Trimmomatic (v0.33), and Bowtie2 (v2.3.4.3). 
Reads aligning to the human genome and ribosomal 
DNA (rDNA) were filtered out by mapping them to the 
human reference genome (GRCh37) and the SILVA 128 
database. Additionally, non-human reads shorter than 75 
bp were discarded. Taxonomic profiling was carried out 
using MetaPhlAn (v3.0.3). Microbial functional profiling, 
including MetaCyc pathways and Enzyme Commission 

Fig. 1  Study design and analytical framework. The study was based on the Tongji-Huaxi-Shuangliu Birth Cohort, with data collected during early 
and middle pregnancy. Participants included GDM cases and controls matched in a 1:2 ratio for fatty acid assessments, and in a 1:1 ratio 
for 16S rRNA gene sequencing and shotgun metagenomic sequencing. Data acquisition encompassed demographic and clinical information 
through questionnaires, along with plasma and fecal samples for biochemical and microbiota analyses. Statistical analyses included conditional 
logistic regression, linear mixed-effects models, and Mendelian randomization, with mediation and interaction analyses to assess the role 
of microbiota. GDM, gestational diabetes mellitus; OGTT, 75-g oral glucose tolerance test; SNPs, single-nucleotide polymorphisms

(See figure on next page.)
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Fig. 1  (See legend on previous page.)
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gene families, was conducted with HUMAnN (v3.0.0-
alpha.3). For downstream analyses, species were filtered 
to exclude markers with low overall abundance (< 0.01%) 
and those present in fewer than 10% of samples. Micro-
bial pathway filtration was performed through a multi-
step selection process as previously described [25]. In 
brief, pathways with the top 50% of mean abundance and 
the top 50% of variance were retained. The remaining 
pathways were clustered using the R function cutree at a 
height of 0.6, and a representative pathway was selected 
for each cluster. Ultimately, 66 pathways were included 
in the final analyses. All the microbial features were arc-
sine square root transformed and were subsequently con-
verted into Z-score before the analyses.

Assessment of covariates
Maternal demographics (age and education), lifestyles 
(dietary intake, cigarette smoking, alcohol drinking, and 
physical activity), and clinical factors (pre-pregnancy 
BMI, parity, GDM history, and family history of diabe-
tes) were collected via structured questionnaires and 
medical records. Physical activity was assessed using 
the Chinese Pregnancy Physical Activity Questionnaire, 
with energy expenditure quantified in terms of metabolic 
equivalent of task (MET) hours per week, based on the 
types of activities and their respective durations [26]. 
Self-reported dietary intake categories were as follows: 
meat (0, ≤ 50, ≤ 100, > 100 g/day), vegetables and fruits (≤ 
50, ≤ 100, ≤ 150, > 150 g/day), eggs (0, ≤ 1, > 1/day), and 
dairy product (0, < 250, ≥ 250 ml/day). Metabolic bio-
markers were evaluated using fasting blood samples from 
early pregnancy among 269 GDM cases and 538 con-
trols as previously described [9], including fasting plasma 
glucose, serum insulin, C-peptide, hemoglobin A1 C 
(HbA1c), total cholesterol, triglycerides, high-density 
lipoprotein (HDL) cholesterol, low-density lipoprotein 
(LDL) cholesterol, adiponectin, and leptin. The homeo-
static model assessment for insulin resistance (HOMA-
IR) was calculated as fasting glucose (mmol/L) × fasting 
insulin (mIU/L)/22.5.

Statistical analysis
Associations between LA and GDM
Univariable conditional logistic regression models were 
employed to compare baseline characteristics between 
GDM cases and their matched controls. In the single 
time-point analysis, odds ratios (ORs) and correspond-
ing 95% confidence intervals (CIs) were estimated using 
multivariable conditional logistic regression models to 
assess the association between LA levels during early 
and middle pregnancy and the risk of GDM. Adjust-
ments were made for maternal age (years, continuous), 
education (primary or middle school, high school, and 

college or above), gestational age at baseline blood col-
lection (weeks, continuous), parity (nulliparous and mul-
tiparous), cigarette smoking (ever and never), alcohol 
drinking (ever and never), physical activity (continuous, 
MET-hours/week), pre-pregnancy BMI (< 18.5, 18.5–24, 
24–28, and ≥ 28 kg/m2 based on the Chinese criteria for 
overweight and obesity) [27], family history of diabetes 
(yes and no), and history of GDM (yes and no). LA lev-
els were analyzed both as a categorical variable, divided 
into tertiles based on the distribution among controls, 
and as a continuous variable, expressed as the percent-
age increase by weight of total fatty acids. To examine 
linear trends across tertiles of LA, pregnant women were 
assigned the median value in each tertile, which was then 
modeled as a continuous variable. To explore the longi-
tudinal association between plasma LA levels and the 
risk of GDM, we used linear mixed models to examine 
the joint association, incorporating LA data from both 
early and middle pregnancy and accounting for partici-
pant-specific random intercepts and random effects for 
the matched case–control pairs, with adjustments for the 
above covariates and stage of pregnancy (i.e., early and 
middle pregnancy). Partial Spearman’s correlation coef-
ficients were calculated between LA measured in early 
pregnancy and multiple metabolic biomarkers including 
fasting plasma glucose, serum insulin, C-peptide, HbA1c, 
total cholesterol, triglycerides, HDL cholesterol, LDL 
cholesterol, adiponectin, leptin, and HOMA-IR after 
adjusting for the aforementioned covariates. Sensitivity 
analyses were conducted by (1) including BMI as a con-
tinuous variable; (2) further adjusting for dietary intake 
of meat, vegetables, fruits, eggs, and dairy products; (3) 
excluding women with history of GDM or family history 
of diabetes during early and middle pregnancy, and (4) 
exluding women with a history of smoking and drink-
ing. We also performed exploratory subgroup analyses 
by age (< 30 and ≥ 30 years), BMI (< 24 and ≥ 24 kg/
m2), and physical activity(< 116.68 and ≥ 116.68 MET-
hours/week), with 116.68 representing the median physi-
cal activity level. P values for interaction were evaluated 
using a likelihood ratio test, comparing models with and 
without the interaction term between LA and stratifying 
variables.

Mendelian randomization analyses
Two-sample MR analyses were conducted to examine the 
causal relationship between plasma LA and GDM using 
genome-wide association study (GWAS) data. GWAS 
data for LA were obtained from the IEU OpenGWAS 
database (https://​gwas.​mrcieu.​ac.​uk/, GWAS IDs: ebi-a-
GCST90092881), comprising 115,006 participants from 
European ancestry [28]. GWAS data for GDM outcomes 
were from the FinnGen consortium, specifically from 

https://gwas.mrcieu.ac.uk/
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Release 10 (https://​finng​en.​gitbo​ok.​io/​docum​entat​ion), 
with the dataset for 14,718 GDM cases and 215,592 con-
trols. Forty-one single-nucleotide polymorphisms (SNPs) 
associated with LA were selected based on their genome-
wide significance (P < 5 × 10−8) and the absence of linkage 
disequilibrium (R2 < 0.001 within a window size of 10,000 
kilobases). Linkage disequilibrium was assessed using 
the PLINK clumping method with data from the 1000 
Genomes European panel. The SNP (rs1260326) showed 
a significant association with GDM (P < 5 × 10−5). To 
reduce bias and control for type 1 error rates, this SNP 
was removed from the analysis, ensuring that the SNPs 
used as instrumental variables do not have a direct asso-
ciation with the outcome [29]. Moreover, four SNPs 
that were not present in the outcome GWAS summary 
data were omitted. During the harmonization process of 
exposure and outcome data, two palindromic SNPs with 
intermediate allele frequencies were identified and sub-
sequently removed. Ultimately, a total of 34 instrumental 
variables were carefully selected for our Mendelian ran-
domization analyses. For each variant incorporated into 
the genetic instruments, F-statistics were subsequently 
computed according to literature and an F-statistic below 
10 implies the presence of weak instrument bias [30, 31].

The random-effects multiplicative inverse-variance 
weighted (IVW) method, which allows for heterogeneity 
for the SNPs used in the instruments, was used as the pri-
mary MR method. MR-Egger, weighted median (WM), 
simple mode, and weighted mode approaches were uti-
lized as complementary methods. To evaluate heteroge-
neity, Cochran’s Q test was employed. If the Cochran’s Q 
test yielded a P < 0.05, a random-effects model would be 
employed in the subsequent analyses. Conversely, if the P 
was ≥ 0.05, a fixed-effects model would be utilized [32]. 
Subsequently, the MR-Egger intercept test was conducted 
to assess horizontal pleiotropy. Mendelian randomization 
pleiotropy residual sum and outlier (MR-PRESSO) was 
employed to identify outliers (i.e., potentially pleiotropic 
SNPs) and estimate the causal effect after their exclusion, 
with 10,000 simulations performed [33]. Finally, a leave-
one-out analysis was conducted to ensure the robustness 
of the combined effect estimate, thus confirming that the 
removal of any single SNP did not unduly influence the 
MR analyses [34].

Associations between LA and gut microbiota
We calculated α-diversity and β-diversity metrics for 
early and middle pregnancy based on the relative abun-
dance of ASVs for each sample using the vegan package 
in R. α-diversity, quantified by the Shannon index, Simp-
son index, and Chao 1 index, was compared across LA 
tertiles based on the distribution among controls using 
a linear mixed-effects model to account for repeated 

measures within participants. β-diversity was evaluated 
via permutational multivariate analysis of variance (PER-
MANOVA) utilizing a Bray–Curtis dissimilarity matrix 
to assess overall community composition differences 
across LA tertiles. To examine associations between indi-
vidual microbial genus and LA levels, linear mixed-effects 
models (for joint association) were constructed, incorpo-
rating participant-specific identifiers (IDs) and matched 
case–control IDs as random effects to account for intra-
individual variability and the paired study design based 
on data collected from early and middle pregnancy. For 
the genera that showed significant associations in the 
joint association model, additional analyses were per-
formed to assess single time-point associations using lin-
ear models. Dynamic associations (i.e., delta associations) 
were estimated based on temporal changes in LA from 
early to middle pregnancy and microbiota abundance 
in middle pregnancy. The associations between LA and 
gut microbiota in early and middle pregnancy were also 
assessed separately. All models were adjusted for mater-
nal age, education level, gestational age at baseline blood 
collection, pre-pregnancy BMI, sampling time, dietary 
intake (meat, vegetables, fruits, eggs, and dairy products), 
and GDM status. P values were adjusted for multiple 
comparisons using the Benjamini–Hochberg procedure 
to control the false discovery rate (FDR), with a corrected 
P value threshold of < 0.25 considered statistically signifi-
cant [35]. This threshold was used to balance sensitivity 
and specificity in hypothesis generation, as exploratory 
analyses prioritize minimizing missed biological rela-
tionships (Type II errors) over strict control of false posi-
tives (Type I errors). By using this lenient FDR-adjusted 
threshold, we aimed to systematically identify plausible 
biological pathways for future mechanistic studies while 
maintaining statistical transparency in high-dimensional 
data exploration.

Associations between LA‑associated microbial genera 
and metabolic biomarkers
LA microbiota index (LAMI) was calculated based on 
microbiota data. First, genera showing significant posi-
tive correlations (abundance increasing with LA levels) 
and negative correlations (abundance decreasing with 
LA levels) with plasma LA were identified through lin-
ear mixed-effects models. Subsequently, for each indi-
vidual, the mean abundance of negatively correlated 
genera was subtracted from that of positively correlated 
genera. Finally, this score was standardized across the 
cohort using z-score normalization [36]. To verify the 
reliability of the established LAMI, we employed a linear 
mixed-effects models to analyze the relationship between 
LA levels and LAMI based on data from early and mid-
dle pregnancy, adjusting for the same covariates as those 

https://finngen.gitbook.io/documentation
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used in the initial LA-microbiota association study. Addi-
tionally, we used multivariable linear regression models 
to assess the associations of LAMI with various meta-
bolic biomarkers (fasting plasma glucose, serum insulin, 
C-peptide, HbA1c, total cholesterol, triglycerides, HDL 
cholesterol, LDL cholesterol, adiponectin, leptin, and 
HOMA-IR), adjusting for the same covariates as in the 
previous conditional logistic models. Z-score normaliza-
tion was performed for metabolic biomarkers.

Mediation analyses for gut microbiota in the association 
between LA and metabolic biomarkers in early pregnancy
For biomarkers significantly associated with both LAMI 
and LA, we conducted a bidirectional mediation analysis 
using the mediate function from the R package mediation 
to explore the mediating role of gut microbiota in the 
relationship between plasma LA and metabolic biomark-
ers. Here, the levels of plasma LA, gut microbiota, and 
metabolic biomarkers were all from the early pregnancy. 
Prior to the mediation analysis, we performed z-score 
normalization for plasma LA levels. The mediation mod-
els were adjusted for maternal age, education, gestational 
age at baseline blood collection, parity, cigarette smok-
ing, alcohol drinking, physical activity, pre-pregnancy 
BMI, family history of diabetes, and history of GDM.

Interaction analyses between gut microbiota and LA 
for GDM in early pregnancy
To explore the statistical interaction between plasma 
LA and gut microbiota for GDM, we utilized a standard 
statistical approach to examine the interaction between 
LA and individual genera based on data from early preg-
nancy [37, 38]. We categorized low and high abundance 
groups using the second tertile of the relative abundance 
of LA-related microbial genera. Multivariable condi-
tional logistic models  were constructed, incorporating 
LA levels, the abundances of LA-related microbial gen-
era, and the interaction term between these variables, 
with adjustments for maternal age, education, gestational 
age at baseline, parity, cigarette smoking, alcohol drink-
ing, physical activity, pre-pregnancy BMI, family history 
of diabetes, and history of GDM. P values for interaction 
were determined using the likelihood ratio test by com-
paring models with and without the interaction term. 
Furthermore, we analyzed the relationships between 
LA levels and GDM within subgroups defined by differ-
ent abundance levels of the specified genera using logis-
tic  regression models, adjusting for the aforementioned 
covariates and matched case–control IDs.

Species‑level and functional analyses
Based on the genus-level associations identified from 16S 
rRNA data, we conducted species-level analysis using 

metagenomic data. Multivariable linear regression mod-
els were applied to early pregnancy data to examine the 
relationships between metabolic biomarkers and LA-
associated microbiota at the species level. In subsequent 
functional analyses, LA-related pathways were identified 
and further evaluated for their associations with meta-
bolic biomarkers, with statistical significance defined as 
P < 0.25 corrected using the Benjamini–Hochberg proce-
dure. Additionally, key enzymes within significant path-
ways were analyzed for their associations with metabolic 
markers using multivariable linear regression models. All 
models were adjusted for the same covariates as those 
used in the genus-level analyses.

All statistical analyses were conducted using RStudio 
software (version 2021.09.1) or STATA 18.0 (Stata Cor-
poration). A two-tailed P < 0.05 was considered statisti-
cally significant unless otherwise specified.

Results
Characteristics of study participants
Of the 807 participants, the mean maternal age (stand-
ard deviation) was 27.78 years (3.88) and the mean ges-
tational age was 10.38 weeks (1.95) at baseline (Table 1). 
Pregnant women with GDM exhibited a significantly 
higher pre-pregnancy BMI compared to controls (22.25 
kg/m2 ± 3.27 vs. 21.14 kg/m2 ± 2.98, P < 0.001). While 
most baseline characteristics showed no significant dif-
ferences between the two groups, pregnant women with 
GDM were more likely to have a family history of diabe-
tes (10.78% vs. 5.76%, P = 0.001) and a history of GDM 
(5.58% vs. 1.30%, P = 0.01), compared to controls. To 
understand potential confounding, we quantitatively 
assessed the relationships of circulating LA and micro-
biota diversity with pre-pregnancy BMI, family history of 
diabetes, and a history of GDM using linear mixed-effects 
modeling (Additional file 1: Fig. S1). Baseline characteris-
tics were similar between 192 pregnant women with 16S 
profiling and 615 without (Additional file 1: Table S1).

Association between LA and GDM in observational 
analyses
Elevated LA levels were associated with a lower risk 
of GDM in multivariable conditional logistic models 
(Fig. 2A). During early pregnancy, adjusted ORs for GDM 
significantly decreased across LA tertiles: for Tertile 1 (≤ 
23.10), Tertile 2 (23.10–26.02), and Tertile 3 (> 26.02), 
ORs were 1.00, 0.62 (95% CI, 0.42–0.92), and 0.52 (95% 
CI, 0.35–0.79), respectively (P trend = 0.002). Each unit 
increase in the LA percentage was associated with an OR 
of 0.92 (95% CI, 0.87–0.96). During middle pregnancy, 
similar but slightly weaker associations were observed: 
for Tertile 1 (≤ 19.96), Tertile 2 (19.96–22.38), and Ter-
tile 3 (> 22.38), ORs were 1.00, 0.88 (95% CI, 0.61–1.28), 
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and 0.60 (95% CI, 0.39–0.93), respectively (P trend 
= 0.02). Each unit increase in LA percentage was associ-
ated with an OR of 0.94 (95% CI, 0.88–0.999). The linear 
mixed-effects model showed lower LA levels in GDM 
patients compared to controls (β = − 0.66; 95% CI, − 1.03 
to − 0.29). Higher LA levels were correlated with a more 
favorable metabolic profile, characterized by higher adi-
ponectin (P < 0.001) and lower triglycerides (P < 0.001), 
HbA1c (P = 0.04), and C-peptide (P = 0.04) (Fig.  2B). 
Sensitivity analyses confirmed these associations (Addi-
tional file  1: Table  S2). Subgroup analyses showed no 
statistical heterogeneity by age, pre-pregnancy BMI, and 
physical activity (all P for interaction ≥ 0.19, Additional 
file 1: Table S3-S5).

Association between LA and GDM in MR analyses
The selected 34 SNPs for MR analyses explained approxi-
mately 3.6% of the variance in plasma LA levels, with a 
mean F-statistic of 127.08. In primary MR analyses using 
the MRE-IVW method, each unit increase of LA was 
associated with a 16% reduction in GDM risk (OR 0.84, 
95% CI 0.72, 0.95). Consistent results were obtained 
from the weighted median, MR Egger, weighted mode, 
and simple mode methods (Fig.  2C, D). Both the IVW 
method (Q = 54.10, P = 0.01) and MR-Egger method (Q = 
54.10, P = 0.01) indicated potential heterogeneity among 
the instrumental variables, leading to the use of a random 
effects model for reliable estimates. MR-Egger regression 
(intercept = − 0.0002, P = 0.97) showed no potential plei-
otropy, and MR-PRESSO did not identify any outliers (all 
P > 0.1). Stability of the findings was confirmed through 
the  leave-one-out analysis, which showed no significant 
change when any single SNP was excluded (Additional 
file 1: Fig. S2).

Association between LA and gut microbiota
The α-diversity and microbial community composition 
showed no significant differences across different LA 
levels (Fig. 3A, B, Additional file 1: Fig. S3). At the genus 
level, Haemophilus and an unidentified genus within the 
family Erysipelotrichaceae were positively associated with 
increased LA levels. Conversely, Klebsiella, Bilophila, an 
unidentified genus within the class TM7 - 3, and an uni-
dentified genus within the order CW040 were negatively 
associated with LA levels (Fig. 3C, E). Four LA-associated 
genera were further associated with changes in LA levels 
from early to middle pregnancy (delta association). Addi-
tionally, three genera were associated with LA levels in 
early pregnancy, and five were associated with LA levels 
in middle pregnancy (Fig. 3D). The LAMI based on these 
6 genera, was positively associated with plasma LA levels 
across all 192 pregnant women (P < 0.001), within GDM 
cases (n = 96) (P = 0.04), and non-GDM controls (n = 96) 
(P = 0.004) using data from both early and middle preg-
nancy (Additional file 1: Fig. S4).

Association between LA and metabolic health 
and the mediating role of gut microbiota
LAMI was found to be inversely correlated with sev-
eral metabolic biomarkers, including HOMA-IR (P = 
0.02), insulin (P = 0.03), and C-peptide (P = 0.01) in 
early pregnancy (Fig.  4A). Given the significant correla-
tions between LAMI and C-peptide, and the association 
between LA and C-peptide, we hypothesized that the 
gut microbiome might mediate the effects of LA on host 
metabolic health. In the bidirectional mediation analysis 
using data collected from early pregnancy, LAMI was 
found to mediate the association of the plasma LA levels 
with C-peptide (mediation proportion = 25%; P = 0.01) 
(Fig. 4B).

Table 1  Baseline characteristics of study participants

a  Data are reported as mean ± standard deviation, or number (percentage)

BMI body mass index, GDM gestational diabetes mellitus, MET metabolic equivalent task

Total (N = 807)a GDM cases (n = 269)a Controls (n = 538)a Pvalues

Maternal age (years) 27.78 ± 3.88 27.89 ± 4.02 27.73 ± 3.82 NA

Gestational age (weeks) 10.38 ± 1.95 10.30 ± 2.08 10.42 ± 1.89 NA

Pre-pregnancy BMI (kg/m2) 21.51 ± 3.12 22.25 ± 3.27 21.14 ± 2.98  < 0.001

College education or above 332 (41.14) 106 (39.41) 226 (42.01) 0.65

Ever smoking 42 (5.20) 17 (6.32) 25 (4.65) 0.32

Ever drinking 147 (18.22) 53 (19.70) 94 (17.47) 0.45

Physical activity, MET-hours/week 129.55 ± 79.30 124.00 ± 77.23 132.33 ± 80.24 0.17

Nulliparous 403 (49.94) 140 (52.04) 263 (48.88) 0.34

Family history of diabetes 60 (7.43) 29 (10.78) 31 (5.76) 0.001

History of GDM 22 (2.73) 15 (5.58) 7 (1.30) 0.01
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Fig. 2  Association and causal analyses for linoleic acid with GDM. A Association of linoleic acid levels with GDM risk across pregnancy. Adjusted 
for maternal age (years, continuous), education (primary or middle school, high school, and college or above), gestational age at baseline blood 
collection (weeks, continuous), parity (nulliparous and multiparous), cigarette smoking (ever and never), alcohol drinking (ever and never), 
physical activity (continuous, MET-hours/week), pre-pregnancy BMI (< 18.5, 18.5–24, 24–28, and ≥ 28 kg/m2), family history of diabetes (yes 
and no), and history of GDM (yes and no). B Correlations of linoleic acid levels with metabolic biomarkers in early pregnancy. Partial Spearman’s 
correlation coefficients were calculated, adjusting for the same covariates mentioned above. C Scatter plot of causal association between plasma 
linoleic acid and GDM. The slope of each line represents the MR effect estimate from different methods. D Forest plot for MR results. The “*” refers 
to random-effects multiplicative inverse-variance weighted method. BMI, body mass index; GDM, gestational diabetes mellitus; HbA1c, hemoglobin 
A1 C; HDL, high-density lipoprotein; HOMA-IR, homeostatic model assessment for insulin resistance; LDL, low-density lipoprotein; MET, metabolic 
equivalent task; MR, mendelian randomization; SNPs, single-nucleotide polymorphisms
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Association of LA with GDM modified by gut microbiota
A significant interaction was detected between LA lev-
els and the abundance of Bilophila in early pregnancy in 
relation to GDM (P interaction = 0.03, Fig. 4C). Among 
pregnant women with low relative Bilophila abundance 
(≤ 0.067%), an inverse relationship was observed between 
LA levels and GDM (OR 0.86, 95% CI 0.75, 0.97). In con-
trast, no significant correlation was found in women with 
high Bilophila abundance (> 0.067%) (OR 1.15, 95% CI 
0.91, 1.50) (Fig.  4C). Similarly, a significant interaction 
was observed between LA levels and the abundance of 
f_Erysipelotrichaceae; g_unknown in relation to GDM 
(P interaction = 0.03, Fig. 4C). Among women with low 
f_Erysipelotrichaceae; g_unknown abundance (≤ 0.613%), 
an inverse relationship was found between LA levels 
and GDM (OR 0.85, 95% CI 0.74, 0.97). No significant 
correlation was noted in women with high f_Erysipel-
otrichaceae; g_unknown abundance (> 0.613%) (OR 1.26, 
95% CI 0.98, 1.68).

Species‑level and functional analyses
Species-level analyses showed significant positive asso-
ciations between Bilophila wadsworthia (average relative 
abundance = 0.10%) and several metabolic biomarkers, 
including positive associations with C-peptide, insulin, 
and HOMA-IR (Fig.  5A). With multivariable adjust-
ments, 27 microbial functional pathways were associ-
ated with LA (FDR-adjusted P < 0.25, Fig.  5B). Nine of 
these pathways related to carbohydrate degradation, 
nucleotide synthesis, amino acid and secondary metabo-
lite production, and energy generation were linked to 
changes in metabolic markers such as HbA1c, adiponec-
tin, HDL cholesterol, and insulin (FDR-adjusted P < 0.25, 
Fig. 5B). Among the pathways identified, GALACTURO-
CAT-PWY (D-galacturonate Degradation I), which 
belongs to the carbohydrate degradation category, was 
positively associated with insulin levels. This key path-
way is involved in breaking down D-galacturonate, an 

important component of pectin found in plant cell walls. 
It plays a crucial role in carbohydrate utilization by gut 
microbiota, converting D-galacturonate into intermedi-
ates that can be further metabolized for energy produc-
tion and other biosynthetic processes. Moreover, the key 
enzyme EC 4.2.1.7 (D-altronate dehydratase) within this 
pathway was positively associated with leptin and fasting 
glucose, but was negatively associated with HDL choles-
terol (Fig. 5C). Among the microbial contributors to this 
enzyme, Klebsiella ranked third in overall contribution, 
which was also found to be negatively associated with LA 
levels (Fig. 5D).

Discussion
In our prospective study, higher plasma LA levels in 
both early and middle pregnancy were inversely associ-
ated with the risk of GDM. The LA associated microbiota 
mediated the relationship between LA and metabolic 
biomarkers. Notably, Bilophila modified the inverse asso-
ciation between LA and GDM risk, which was stronger 
in pregnant women with lower Bilophila abundance. The 
GALACTUROCAT-PWY pathway may play a significant 
role in the metabolic effect of LA. These findings high-
light the intricate interplay among LA, gut microbiota, 
and GDM risk.

Previous studies on the association between LA and 
GDM reported neutral or inconsistent effects [8–10, 
14]. Compared with previous studies, our study uniquely 
measured LA levels at two distinct stages of pregnancy 
and applied MR analysis to validate the causal relation-
ship. This methodological approach provides stronger 
evidence for the protective effect of LA against GDM. 
Interestingly, the only US-based study that explored lon-
gitudinal shifts in LA levels during pregnancy failed to 
establish a negative association between LA and GDM 
risk [14]. This discrepancy may be due to overlooked fac-
tors like the regulatory role of the gut microbiota. Our 
study offers novel insights into this aspect, demonstrating 

Fig. 3  Effect of linoleic acid on gut microbiota diversity and specific bacterial genera. A Shannon index across linoleic acid tertiles. Median 
lines, boxes (25 th–75 th percentiles), and whiskers (1.5 times the box length) show data distribution, with outliers marked. P values were 
from the linear mixed-effects model. Sample sizes (n) are provided for each group. B Principal coordinates analysis of beta diversity index changes 
during pregnancy across linoleic acid tertiles. P values were from the PERMANOVA. Sample sizes (n) are provided for each group. C Associations 
of linoleic acid levels with individual gut microbial genera. Significant associations of linoleic acid levels with microbial genera (FDR-adjusted P < 
0.25) are presented, which are overlaid onto their taxonomic information. The innermost ring and phylogenetic trees use colors to distinguish 
major phyla. The height of the outer bars corresponds to the mean relative abundance of each microbial genus. D Associations of genera identified 
in the joint association analysis with linoleic acid in early and middle pregnancy. E Significant associations between linoleic acid levels and microbial 
genera are highlighted. All models were adjusted for GDM status (yes and no), maternal age (years, continuous), education (primary or middle 
school, high school, and college or above), gestational age at baseline blood collection (weeks, continuous), pre-pregnancy BMI (< 18.5, 18.5–24, 
24–28, and ≥ 28 kg/m2), and intake of meat (0, ≤ 50, ≤ 100, and > 100 g/day), vegetables and fruits (≤ 50, ≤ 100, ≤ 150, and > 150 g/day), eggs 
(0, ≤ 1, and > 1/day), and dairy product (0, < 250, and ≥ 250 ml/day). FDR, false discovery rate; GDM, gestational diabetes mellitus; PERMANOVA, 
permutational multivariate analysis of variance

(See figure on next page.)
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that the LA-associated microbiota mediated the rela-
tionship between plasma LA levels and the metabolic 
biomarker, C-peptide, suggesting an alternative mecha-
nism for LA’s protective effect on GDM. Furthermore, we 

found that Bilophila modified the association between 
LA and GDM, with a stronger inverse correlation in 
women with lower Bilophila abundance. This indicates 
that LA’s protective effect on GDM risk is modified by 

Fig. 3  (See legend on previous page.)
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Fig. 4  Mediation and interaction analyses for linoleic acid, gut microbiota, and metabolic health in early pregnancy. A Effect of linoleic acid 
microbiota index on metabolic biomarkers. B Mediation analysis of linoleic acid microbiota index for the association of linoleic acid with C-peptide. 
PIDE and Pinv-IDE were estimated by the bidirectional mediation analysis. PIDE indicates the P value for the indirect effect and Pinv-IDE indicates P value 
for the inverse indirect effect. The full arrowed lines show the effect of linoleic acid on C-peptide mediated by linoleic acid microbiota index. 
Inverse mediation was performed to check whether linoleic acid microbiota index can influence C-peptide through linoleic acid. C Interaction 
between linoleic acid levels and specific gut microbiota for GDM risk. Low and high abundance groups were defined based on the second tertile 
of relative abundance for LA-related microbial genera. The P value for interaction was derived from the interaction term between LA-related 
microbial genera and LA levels in the multivariable conditional logistic regression models. All models were adjusted for maternal age (years, 
continuous), education (primary or middle school, high school, and college or above), gestational age at baseline blood collection (weeks, 
continuous), parity (nulliparous and multiparous), cigarette smoking (ever and never), alcohol drinking (ever and never), physical activity 
(continuous, MET-hours/week), pre-pregnancy BMI (< 18.5, 18.5–24, 24–28, and ≥ 28 kg/m2), family history of diabetes (yes and no), and history 
of GDM (yes and no). GDM, gestational diabetes mellitus; HbA1c, hemoglobin A1 C; HDL, high-density lipoprotein; HOMA-IR, homeostatic model 
assessment for insulin resistance; IDE, indirect effect; inv-IDE, inverse indirect effect; LDL, low-density lipoprotein
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Fig. 5  Association of linoleic acid-related microbiota and pathways with metabolic markers in early pregnancy. A Associations between Bilophila 
wadsworthia (average relative abundance = 0.10%) and metabolic markers. All models were adjusted for maternal age (years, continuous), 
education (primary or middle school, high school, and college or above), gestational age at baseline blood collection (weeks, continuous), parity 
(nulliparous and multiparous), cigarette smoking (ever and never), alcohol drinking (ever and never), physical activity (continuous, MET-hours/
week), pre-pregnancy BMI (< 18.5, 18.5–24, 24–28, and ≥ 28 kg/m2), family history of diabetes (yes and no), and history of GDM (yes and no). 
B Associations of linoleic acid and metabolic markers with metagenomic pathways. All models were adjusted for GDM status, maternal age, 
education, gestational age at baseline blood collection pre-pregnancy BMI, and intake of meat, vegetables and fruits, eggs, and dairy product. C Key 
steps in the D-GALACTUROCAT-PWY are shown with corresponding enzymes. Scatter plots show the correlations between the relative abundance 
of key enzyme (EC 4.2.1.7) and metabolic markers. D Microbiota contributing to EC 4.2.1.7 enzyme. HbA1c, hemoglobin A1 C; HDL, high-density 
lipoprotein; HOMA-IR, homeostatic model assessment for insulin resistance; LDL, low-density lipoprotein
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the gut microbiota, particularly the abundance of Biloph-
ila. Prior studies have shown that diets high in animal 
products increase Bilophila abundance [39, 40]. Biloph-
ila wadsworthia, a species within this genus, has been 
linked to higher inflammation, intestinal barrier dysfunc-
tion, and bile acid dysmetabolism, all of which contrib-
ute to glucose dysregulation [41]. Consistent with these 
findings, our study also observed that higher Bilophila 
wadsworthia abundance was associated with elevated 
levels of C-peptide and insulin. Our findings may col-
lectively explain why significant associations between LA 
and GDM were not observed in populations that gener-
ally adhered to a meat-rich diet, such as those in the USA 
[14].

While the evidence regarding LA and its association 
with GDM is still limited, findings from type 2 diabetes 
research provide a compelling basis for understanding 
LA’s potential role in metabolic health. Extensive stud-
ies, including comprehensive meta-analyses and obser-
vational studies, consistently showed that high dietary 
intake and elevated circulating LA were significantly 
associated with lower risks of type 2 diabetes [6, 42, 43]. 
Moreover, a recent study using MR also found a causal 
relationship between high levels of LA and a lower risk of 
type 2 diabetes, as well as lower fasting blood glucose and 
glycated HbA1c levels [44]. Consistently, high plasma 
phospholipid LA levels were favorably linked with lower 
serum LDL cholesterol, triglycerides, and fasting plasma 
glucose in a Norwegian general population [45]. These 
findings align with our study, where we also observed 
that higher LA levels were associated with decreased tri-
glycerides, HbA1c, and C-peptide levels. Such consistent 
associations across different populations highlight the 
robustness of LA’s beneficial effects on metabolic health.

Our data suggest that the GALACTUROCAT-PWY 
may play a role in the protective effect of LA on meta-
bolic health. We observed that the relative abundance of 
the GALACTUROCAT-PWY was inversely associated 
with LA levels and positively associated with insulin lev-
els. This aligns with recent evidence that D-galacturonate 
degradation I was elevated in insulin-resistant children, 
highlighting its potential involvement in metabolic dys-
regulation [46]. Notably, the key enzyme EC 4.2.1.7 in this 
pathway was also linked to unfavorable metabolic bio-
markers, and the relative abundance of the bacteria (such 
as Klebsiella) associated with this enzyme decreased as 
LA levels increased in our work. Consistently, high LA 
levels were shown to associate with higher concentra-
tions of adiponectin, a factor associated with insulin sen-
sitivity, which was also demonstrated in other studies [47, 
48]. These findings suggest that LA may enhance insulin 
sensitivity through its effects on the microbiota, thereby 
contributing to an improved metabolic profile.

Our findings have strong clinical implications for per-
sonalized nutrition strategies that incorporate gut micro-
biota to more effectively prevent or manage GDM. The 
bidirectional relationship between dietary components 
and the gut microbiota is widely recognized [40, 49]. Pre-
vious studies showed that LA supplementation increased 
the abundance of bacterial species capable of metaboliz-
ing LA, and thus led to an increase of several metabolites 
improving metabolic conditions [50]. During pregnancy, 
the gut microbiota dynamically correlates with host glucose 
metabolism and plays a crucial role in preserving the host’s 
metabolic function [21]. Similar analyses in the context 
of erythrocyte n- 6 polyunsaturated fatty acids and type 2 
diabetes also reported an important role of gut microbiota 
[51]. Our findings highlight the importance of considering 
individual differences in gut microbiota when assessing the 
impact of dietary interventions on metabolic health.

Our study has several strengths that ensure the valid-
ity and reliability of its findings. The longitudinal design, 
tracking participants from early to middle pregnancy, 
allows us to investigate longitudinal association between 
LA levels and GDM risk over time. The integration of 
multi-omics data and the use of MR analyses enrich the 
breadth and depth of our research, enabling us to reach 
valid conclusions about the relationship between LA 
and GDM. However, we acknowledge inherent limita-
tions. First, as our study used existing linked data from 
three nested case–control studies in the THSBC, cer-
tain analyses only had moderate sample sizes that may 
lack statistical power to detect subtle associations. 
Future large-scale studies from diverse populations 
are needed to corroborate our findings. Second, while 
the MR analyses confirmed a potential causal associa-
tion between LA and GDM, the used GWAS data were 
mostly for Caucasians, and the MR finding may not be 
generalizable to Chinese. Third, the food questionnaire 
was limited to broad food categories, which restricted 
our ability to perform more detailed analyses based 
on specific nutrient intakes. Instead of directly assess-
ing dietary LA intake through food questionnaires, we 
used plasma LA levels as a surrogate marker, which was 
supported by prior evidence [3, 4]. Notably, in a subset 
analysis of 146 participants with paired fecal and plasma 
LA measurements in the THSBC, we observed a signifi-
cant positive correlation between these two biological 
compartments (β = 0.18; P = 0.032). While this associa-
tion suggests possible communication between systemic 
circulation and gut microbial metabolism, the underly-
ing biological mechanisms—whether mediated through 
intestinal absorption efficiency, microbial modification 
of LA, or alternative metabolic pathways—demand 
future mechanistic investigations. Fourth, the media-
tion analyses only used cross-sectional data for LA, gut 
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microbiota, and metabolic biomarkers due to data una-
vailability. Future studies with temporal data, assessing 
these variables at multiple time points throughout preg-
nancy, are necessary to better understand the tempo-
ral relationships and causal pathways between LA, gut 
microbiota, and maternal metabolic health.

Conclusions
Our study documented robust evidence for the inverse 
association between plasma LA levels during preg-
nancy and the risk of GDM. In addition, it offered 
novel insights into the potential role of microbiota 
in modulating LA to improve insulin sensitivity and 
reduce GDM risk. By uncovering the intricate inter-
play between LA and gut microbiota, our findings may 
offer new directions for future research on personal-
ized nutritional strategies for GDM. However, future 
large-scale studies, along with animal and in  vitro 
experiments, are needed to validate these findings and 
explore the underlying mechanisms in greater depth.
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