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Abstract 

Background  Extramedullary myeloma disease (EMD) can present at disease relapse (secondary EMD, sEMD) 
and confers an aggressive clinical course. Identifying predictive markers for sEMD is crucial for clinical management.

Methods  Our study, spanning February 2013 to October 2022, identified sEMD in 77 (12.5%) of 618 newly diagnosed 
multiple myeloma patients. We categorized sEMD patients into bone-related extramedullary (EM-B) and extraos-
seous extramedullary (EM-E) relapse groups, as well as into early and late relapse groups based on the median 
interval from initial MM diagnosis, and assessed their overall survival (OS). We investigated independent predictors 
for the development of sEMD and focused on double-hit (DH) myeloma, one of the predictors of sEMD. Through 
the analysis of single-cell RNA from DH myeloma samples, we explored the potential mechanisms by which it may 
contribute to sEMD.

Results  Median OS post-sEMD diagnosis was 11 months, with no significant OS difference between EM-B and EM-E 
relapse groups. A median interval of 22 months from initial MM diagnosis to sEMD relapse divided the 77 sEMD 
patients into early and late relapse groups, with early sEMD associated with significantly inferior OS post-sEMD (5.0 
vs 27.0 months, p = 0.028). Driven by the prognostic difference of early vs late sEMD relapse, we used a time-to-event 
model and identified five independent predictors: double-hit (DH) cytogenetics, ≥ 3 osteolytic lesions, IgD subtype, 
and non-autologous stem-cell transplantation (ASCT) status, each scoring one point, alongside EM-E scoring two 
points. These predictors informed an additive score, stratifying patients into low (0–2 points) and high (3–5 points) 
risk categories for sEMD, showing a significant difference in 3-year sEMD rates (6.6% vs 52.8%, p < 0.001). Moreover, 
the single-cell RNA sequencing of newly diagnosed DH myeloma samples uncovered significant mitogen-activated 
protein kinase (MAPK) activation in DH cells and exhaustion in CD8 + memory and NK effector cells. Potential thera-
peutic targets such as EZH2 have emerged from this analysis.
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Conclusions  Our study introduces a five-predictor scoring system informed by the potential mechanisms underlying 
sEMD progression in DH myeloma, with the goal of delaying or possibly preventing sEMD.

Keywords  Secondary extramedullary myeloma, Double-hit myeloma, Predictor, Overall survival, Single-cell RNA 
sequencing

Background
Multiple myeloma (MM), a malignancy characterized 
by the proliferation of aberrant plasma cells closely 
interacting with the bone marrow milieu, has seen con-
siderable advancements in overall survival (OS) over 
the last 15  years [1]. However, MM remains predomi-
nantly incurable, with most patients experiencing even-
tual relapse and developing treatment-resistant disease. 
Secondary extramedullary myeloma disease (sEMD), 
manifesting at relapse, is associated with a more aggres-
sive disease course [2] and variable reported incidence 
rates, ranging from 7.5 to 30% [3–5]. Median survival 
following sEMD onset is critically low, approximately 
6–9  months [2, 6]. Current standard regimens for 
relapsed/refractory MM (RRMM), including agents like 
bortezomib, lenalidomide, and pomalidomide, fail to 
considerably enhance sEMD outcomes [7, 8]. The intro-
duction of anti-CD38 antibodies, such as daratumumab 
and isatuximab, has not translated into improved prog-
noses, potentially due to low expression of the CD38 
on EMD plasma cells [9]. Novel therapies like chimeric 
antigen receptor T-cell (CART) treatments and bispe-
cific T-cell engagers show reduced efficacy and survival 
benefits in sEMD patient populations [10, 11], despite 
their notable success in treating triple-class refractory 
myeloma. Even among patients who initially respond to 
treatment, the therapeutic benefits are often short-lived 
[2]. Consequently, identifying predictive markers for 
sEMD is crucial for clinical management. However, the 
absence of large-scale prospective trials has resulted 
in insufficient clinical data to define the predictive 
traits. Thus, our study examines the prevalence, clini-
cal attributes, and survival outcomes of sEMD, along-
side risk factors for its development, in a cohort of 618 
patients with newly diagnosed MM (NDMM). Addi-
tionally, we utilize single-cell sequencing (scRNA-seq) 
analysis to further explore the potential mechanisms 
underlying the progression of sEMD in double-hit (DH) 
myeloma. This real-world analysis of sEMD risk fac-
tors and mechanistic exploration of DH samples aim 
to inform the identification and prophylaxis of sEMD 
amidst emerging therapeutics.

Methods
Patient cohort selection and cytogenetic risk assessment
Following ethical committee approval, we included 
NDMM patients presenting with symptomatic and 
quantifiable disease as per the International Myeloma 
Working Group (IMWG) guidelines [12]. Individu-
als with solitary plasmacytomas or initial primary 
plasma cell leukemia were excluded from the study. 
Patients with MM and concurrent AL amyloidosis were 
included in the study and comprised 2.5% (15/611) of 
the total cohort based on available data. Our retrospec-
tive analysis incorporated 618 NDMM patient records 
from Ruijin Hospital between February 2013 and 
October 2022, with a follow-up endpoint of Novem-
ber 30th, 2023. Cytogenetic risk was centrally assessed 
by fluorescence in-situ hybridization (FISH) analysis 
on CD138-positive sorted cells (200 nuclei analyzed) 
from bone marrow samples at diagnosis. For patients 
with concurrent ≥ 2 cytogenetic abnormalities deemed 
high-risk, including t(4;14), t(14;16), 1q21 gain/ampli-
fication (1q21 +), and del(17p), known as “double hit” 
myeloma (DHMM) [13]. The established thresholds for 
cytogenetic abnormalities were ≥ 10% for transloca-
tions and ≥ 20% for copy number variations [14].

Treatment protocol
The treatment protocol consisted of induction, autolo-
gous stem-cell transplantation (ASCT) for eligible 
patients, consolidation therapy as indicated, and main-
tenance. Induction involved 4–8 cycles of 28  days with 
the PAD regimen: bortezomib (1.3  mg/m2 on days 1, 4, 
8, 11) and pegylated liposomal doxorubicin (30  mg/m2 
over 3  days in cycle 1), plus dexamethasone (40  mg on 
days 1–4). Induction was augmented with lenalidomide 
(10  mg on days 1–21) and/or daratumumab (16  mg/kg 
on days 1, 8, 15) during cycles 3–4 for patients demon-
strating suboptimal response (< partial response) or pos-
session of del(17p), or t(4;14), or t(14;16) after two cycles. 
Post-induction, ASCT candidates underwent stem cell 
collection and ASCT after 4 cycles of induction. After 
subsequent response assessment (within 100  days post-
ASCT), those achieving less than a complete response 
received a further four cycles of consolidation therapy, 
as previously described [15]. Patients ineligible for ASCT 
continued with their original induction therapy for a total 
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of eight cycles. Maintenance therapy across all patient 
groups involved lenalidomide (10 mg on days 1–21 of a 
28-day cycle) and/or bortezomib (1.3  mg/m2 biweekly) 
for up to 2 years.

Outcome measures and diagnostic assessments
Progression-free survival (PFS) was defined as the time 
from the initialization of therapy to progression accord-
ing to IMWG criteria [12] or death by any cause. OS was 
defined as the time from the initialization of therapy to 
death by any cause. Patients who did not die or were lost 
to follow-up were censored at their last evaluation of 
myeloma status. Prior to initial treatment and at the time 
of sEMD relapse, all participants underwent diagnostic 
imaging, including positron emission tomography-com-
puted tomography, computed tomography, B-ultrasound, 
or local magnetic resonance imaging. This study included 
baseline PET/CT for 72.3% (447/618) patients and other 
PET/CT at relapse for 74.0% (57/77) patients. Among 362 
patients with ≥ 3 osteolytic lesions, 86.2% (n = 312) had 
PET/CT, 5.8% (n = 21) had CT, 7.2% (n = 26) had X-ray, 
and 0.8% (n = 3) had MRI. EMD presentations were veri-
fied by biopsy and histological examination whenever 
clinically indicated and safely executable. Bone-related 
extramedullary (EM-B) disease was defined as malignant 
plasma cells breaking through the cortical bone but only 
forming a soft tissue mass around the bone; extraosse-
ous extramedullary (EM-E) disease referred to malignant 
plasma cells forming soft tissue masses distal to bone 
structures [16, 17]. EMD were classified into EM-B or 
EM-E categories, with the EM-E category encompass-
ing any EM-E manifestations, irrespective of concurrent 
EM-B presence.

Characteristics of single‑cell RNA‑seq data
We re-analyzed the datasets of single cell from human 
bone marrow mononuclear cells from eight normal indi-
viduals (data from the R package SeuratData::hcabm40k) 
and five newly diagnosed DHMM patients. Specifi-
cally, GSM3272433, GSM3272434, GSM3272435, and 
GSM3272436 were defined as MM01 with 1q + and 
t(14;16) [18]; GSM5702272 was defined as MM163 with 
1q + and t(4;14); GSM5702276 was defined as MM203 
with 1q + and del(17p); GSM5702278 was defined as 
MM220 with 1q + and t(4;14) [19]; GSM3528764 was 
defined as R9 with 1q + and t(4;14) [20] in this study.

Single‑cell RNA‑seq data integration and analysis
All the matrix was merged and the batch effect was 
removed with the R package harmony v1.2.0. Follow-
ing the common pipeline of the R package Seurat 4.4.0, 
the merged expression matrix was normalized by Nor-
malizeData function and the top 3000 highly variable 

genes were calculated by Seurat:: FindVariableGenes 
function. The uniform manifold approximation and 
projection (UMAP) dimensionality reduction was used 
to project these populations in two dimensions. The 
Seurat::FindAllMarkers was also performed to select sig-
nature genes in different cell clusters. The function Fea-
turePlot and VlnPlot in R package Seurat (v4.4.0) and the 
function DotPlot in the R package ggplot2 (v3.4.4) were 
used to visualize the gene expression.

Gene set enrichment analysis (GSEA) and visualization
The function gseGO and gseKEGG in the R package clus-
terProfiler (v4.4.4) were used to implement the GSEA 
enrichment. The R package enrichplot (v1.16.2) was used 
to visualize the enrichment results obtained from GSEA 
analysis.

Cell–cell communication and ligand‑receptor interaction 
analysis
The R package cellchat (v2.1.1) was applied to investigate 
the cell–cell communication; ligand–receptor interaction 
with P-value < 0.05 was considered as significant. The 
expressions of ligands and receptors were visualized with 
the R package ggplot2 (v3.4.4).

Statistical methods
Continuous variables were presented with medium plus 
range and were compared using nonparametric tests. 
Categorical data were expressed with proportions and 
were evaluated through the chi-square or Fisher’s exact 
test as appropriate. Time-to-event outcomes were cal-
culated with the Kaplan–Meier method and compared 
using the log-rank test. Follow-up duration was deter-
mined via reverse censoring [21]. The univariate Cox pro-
portional hazards model identified potential risk factors 
for sEMD, and a multivariate Cox model identified inde-
pendent predictors, incorporating only variables signifi-
cant (p < 0.05) in univariate analysis. The point estimate 
for hazard ratio (HR) together with its 95% confidence 
interval (CI) was calculated. Predictors were assigned 
scores based on their Cox model coefficients relative to 
that of extensive bone lesions (the median coefficient 
used as a reference, score value = 1) [22, 23]. These scores 
were then rounded to the nearest integer. Cumulative 
incidence curves for sEMD were stratified by additive 
scores and risk groups. Risk stratification based on the 
scoring system categorized patients as low risk (score 
0–2) and high risk (score 3–5). Statistical analyses were 
performed using SPSS (version 22.0) and the R packages 
survival and survminer (R/Bioconductor version 4.3.1), 
with a two-sided significance threshold of p < 0.05.
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Results
Clinical characteristics and involved sites of sEMD
Between February 2013 and October 2022, with a median 
follow-up of 39  months, 77 patients (12.5%) developed 
sEMD among 618 NDMM patients. The demographic 
and pathological characteristics as well as clinical features 
at the time of MM diagnosis were compared between the 
sEMD and non-sEMD groups (Table 1), revealing corre-
lations with certain clinical, laboratory, and cytogenetic 
markers. Briefly, patients with NDMM progressing to 
sEMD presented with a higher frequency of ≥ 3 osteo-
lytic lesions (83.1% vs 55.1%; p < 0.001), hypercalcemia 
(13.0% vs 5.0%; p = 0.006), and EM-E at diagnosis (15.6% 
vs 3.0%; p < 0.001) compared to those without sEMD. 
The sEMD cohort had a lower rate of ASCT (24.7% vs 
39.9%; p < 0.001). Cytogenetically, an increased incidence 
of gain/amplification at the 1q21 locus (65.6% vs 51.7%; 
p = 0.038) and double-hit (DH) cytogenetic abnormalities 
(34.5% vs 14.6%; p < 0.001) were observed in the sEMD 
group, indicative of a more aggressive disease course. 
No significant differences were found in age (≤ 65 years), 
gender, ISS or r-ISS stage, renal dysfunction, anemia, ele-
vated LDH levels, monoclonal protein (M protein) type, 
induction therapy, or the existence of EM-B at diagnosis 
between the two groups.

In characterizing sEMD, our study included both sec-
ondary EM-B (sEM-B) and secondary EM-E (sEM-E) 
types of plasmacytomas. Of the patients with sEMD, 
involvement of sEM-B was documented in 40.3% (n = 31). 
The most prevalent sEM-B locations were paraverte-
bral regions (35.5%), followed by the chest (29.0%), skull 
(19.4%), pelvis (9.7%), and shoulder blade or long bones 
(each 6.5%). As for sEM-E, the most commonly affected 
sites included soft tissue/skin/muscle (39.1%), pleural 
and lung tissues (21.7%), central nervous system (15.2%), 
and lymph nodes (13.0%). Less common sites comprised 
liver (4.3%) and an aggregate of breast, kidney, and pan-
creas involvement (6.5%) (Additional file 1: Table S1).

Survival outcomes and sEMD relapse patterns in newly 
diagnosed and relapsed MM patients
In a cohort of 618 NDMM patients, 325 experienced 
disease relapses, with 77 (36.4%) cases evolving to 
sEMD, which encompasses both sEM-B and sEM-E 
lesions. At the end of the follow-up period, the mor-
tality rate was 21%, corresponding to 130 patients 
deceased, and the estimated median OS for the cohort 
was 7.7  years (Fig.  1A). Notably, the subgroup with 
sEMD relapse demonstrated considerably inferior out-
comes, with an estimated median OS of 3.7  years (95% 
CI: 2.7–4.7  years) from the initial diagnosis of MM 
(Fig.  1A). Survival analysis indicated that the median 

OS post-relapse was significantly lower for patients with 
sEMD compared to those relapsed but without sEMD 
(11.0  months vs 73.0  months, p < 0.001, Fig.  1B). After 
a median follow-up of 27  months post-sEMD diagnosis 
(range: 1–55  months), OS between sEM-B and sEM-E 
groups was not statistically different despite a trend 
towards shorter survival in the sEM-E (18.0  months vs 
9.0 months, p = 0.210, Fig. 1C).

A median duration of 22  months (Fig.  1D) was 
observed between initial MM diagnosis and sEMD 
relapse among 77 patients. These patients were stratified 
into early (≤ 22  months) and late (> 22  months) sEMD 
cohorts. Early sEMD relapse was associated with a sig-
nificantly decreased OS following sEMD (5.0 months vs 
27.0 months, p = 0.028, Fig. 1E), as well as a significantly 
worse OS from the initial MM diagnosis (23.0 months vs 
65.0 months, p < 0.001, Fig. 1F), compared to those with 
late sEMD relapse.

DH cytogenetics as a significant predictor of sEMD relapse 
in time‑dependent univariate and multivariate analyses
The prognostic implications of early vs late sEMD relapse 
indicate that timing should be considered in risk stratifi-
cation for sEMD. Univariate Cox regression analysis iden-
tified DH cytogenetics, along with ≥ 3 osteolytic lesions, 
EMD at diagnosis (encompassing EM-E and EM-B sub-
types), hypercalcemia, IgD subtype, absence of ASCT 
(non-ASCT), increased LDH, R-ISS stage III, and gain/
amplification of 1q21 as significant predictors of sEMD 
relapse (each with p < 0.05). ISS stage III (p = 0.070), 
del(17p) (p = 0.073), and t(4;14) (p = 0.092) demonstrated 
a trend toward an association, whereas factors such as 
age at MM diagnosis (age ≤ 65  years), sex, induction 
regimen, other myeloma protein types, renal impair-
ment, anemia, and t(11;14) did not significantly influence 
sEMD relapse in the univariate analysis (Fig.  2A). The 
subsequent multivariate analysis, which controlled for 
significant variables from the univariate stage, indicated 
that five covariates retained their independent prognostic 
value for predicting sEMD relapse: DH cytogenetics (HR 
2.20, 95% CI, 1.16–4.21, p = 0.017), EM-E at diagnosis 
(HR 6.12, 95% CI, 2.69–13.92, p < 0.001), presence of ≥ 3 
osteolytic lesions (HR 3.15, 95% CI, 1.45–6.82, p = 0.004), 
IgD MM subtype (HR 3.48, 95% CI, 1.42–8.53, p = 0.007), 
and non-ASCT status (HR 2.10, 95% CI, 1.14–3.86, 
p = 0.017) (Fig. 2B).

Development of the sEMD predictive scoring system 
in NDMM patients
The five predictors significantly affecting sEMD relapse 
were used to build an additive score. In the scoring sys-
tem, as detailed in the Methods section, presence of 
DH cytogenetics, ≥ 3 osteolytic lesions, IgD myeloma 
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Table 1  Baseline demographics and disease characteristics

Characteristic
No. (%)

Total NDMM
N = 618

sEMD group
N = 77 (12.5%)

Non- sEMD group
N = 541 (87.5%)

P value

Age, years

  Median (range) 62 (26–84) 62 (26–84) 63 (36–80) 0.631

  Age ≤ 65, No. (%) 387 (62.6%) 48 (62.3%) 339 (62.7%) 0.956

Gender, No. (%) 0.294

  Male 351 (56.8%) 48 (62.3%) 303 (56.0%)

  Female 267 (43.2%) 29 (37.7%) 238 (44.0%)

ISS stage, No. (%) 0.184

  Stage1 211 (34.1%) 22 (28.6%) 189 (34.9%)

  Stage2 250 (40.5%) 29 (37.7%) 221 (40.9%)

  Stage3 157 (25.4%) 26 (33.8%) 131 (24.2%)

R-ISS stage, No. (%) 0.078

  Stage1 104 (20.8%) 10 (15.4%) 94 (21.6%)

  Stage2 336 (67.2%) 42 (64.6%) 294 (67.6%)

  Stage3 60 (12.0%) 13 (20.0%) 47 (10.8%)

Cytogenetics, No. (%)

  Gain/amplification of 1q21 266 (53.5%) 42 (65.6%) 224 (51.7%) 0.038

  del(17p) 53 (10.7%) 10 (15.6%) 43 (9.9%) 0.168

  t(11;14) 76 (16.6%) 9 (14.1%) 67 (17.0%) 0.563

  t(4;14) 73 (15.6%) 14 (21.5%) 59 (14.6%) 0.155

  t(14;16) 5 (1.1%) 1 (1.7%) 4 (1.0%) 0.635

  Double-hit cytogenetics 77 (17.1%) 20 (34.5%) 57 (14.6%) < 0.001

Baseline features

  Hypercalcemia, No. (%) 37 (6.0%) 10 (13.0%) 27 (5.0%) 0.006

  Renal dysfunction (Ccr < 60 ml/min), No. (%) 159 (25.7%) 22 (28.6%) 137 (25.3%) 0.542

  Anemia (< 100 g/L), No. (%) 297 (48.1%) 38 (49.4%) 259 (47.9%) 0.808

  Osteolytic lesions (≥ 3 lesions), No. (%) 362 (58.6%) 64 (83.1%) 298 (55.1%) < 0.001

  LVEF (≥ 60%), No. (%) 570 (96.1%) 73 (97.3%) 497 (95.9%) 0.561

  NT-proBNP, median (range) (ng/ml) 134 (5–32,606) 189 (21–11,328) 128 (5–32,606) 0.155

  ECOG Score 0–2, No. (%) 544 (90.5%) 69 (92.0%) 475 (90.3%) 0.639

Elevated LDH, No. (%) 0.083

  Yes 130 (21.0%) 22 (28.6%) 108 (20.0%)

  No 488 (79.0%) 55 (71.4%) 433 (80.0%)

EMD at diagnosis, No. (%)

  ALL EMD 149 (24.1%) 32 (41.6%) 117 (21.6%) < 0.001

  EM-B (bone-related) 121 (19.6%) 20 (26.0%) 101 (18.7%) 0.175

  EM-E (extraosseous) 28 (4.5%) 12 (15.6%) 16 (3.0%) < 0.001

Induction regimen, No. (%)

  PI-based 486 (78.6%) 61 (79.2%) 452 (78.6%) 0.433

  IMiD-based 51 (8.3%) 5 (6.5%) 46 (8.5%) 0.705

  PI and IMiD combination 57 (9.2%) 6 (7.8%) 51 (9.4%) 0.800

  PI, IMiD and CD38 Ab combination 20 (3.2%) 4 (5.2%) 16 (3.0%) 0.488

ASCT, No. (%) 0.010

  Yes 235 (38.0%) 19 (24.7%) 216 (39.9%)

  No 383 (62.0%) 58 (75.3%) 325 (61.0%)

M type, No. (%)

  IgA 145 (23.5%) 20 (26.0%) 125 (23.1%) 0.819

  IgG 309 (50.1%) 40 (51.9%) 269 (49.8%) 0.687

  IgD 23 (3.7%) 6 (7.8%) 17 (3.1%) 0.090

  sFLC 125 (20.3%) 9 (11.7%) 116 (21.5%) 0.064

  Non-secretory 15 (2.4%) 2 (2.6%) 13 (2.4%) 1.000

LVEF left ventricular ejection fraction, NT-proBNP N-terminal pro-B-type natriuretic peptide, ECOG Eastern Cooperative Oncology Group
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subtype, and non-ASCT contributed 1 point each, and 
EM-E subtype contributed 2 points. The distribution 
of patients with different sEMD predictive scores was 
shown in Table  2. Corresponding 3-year sEMD relapse 
rates for each score group were 0%, 6.1%, 9.9%, 45.5%, 
87.5%, and 60.0%, respectively (Fig.  3A). Risk stratifica-
tion based on the scoring system categorized 390 patients 
(87%) as low risk (0–2 points) and 59 patients (13%) as 
high risk (3–5 points), as per Table 2. A significant dis-
parity in 3-year sEMD relapse rates between low vs 
high-risk groups (6.6% vs 52.8%, p < 0.001) (Fig. 3B) sup-
ports the discriminative power of the scoring system in 
NDMM. Furthermore, the estimated 5-year OS progno-
sis was considerably poorer for high-risk sEMD subjects 
(22.6% vs 76.8%, p < 0.001, Additional file 1: Fig. S1). The 

robustness of the sEMD predictive model was also dem-
onstrated across various patient subsets, including ASCT 
(Additional file 1: Fig. S2A), non-ASCT recipients (Addi-
tional file 1: Fig. S2B), and patients with different induc-
tion regimens (though the IMid induction subgroup was 
excluded due to lack of statistical significance, it still 
exhibited a clear trend toward high-risk patients being 
more prone to sEMD), indicating its broad applicability 
in clinical practice (Additional file 1: Fig. S3A-D). Nota-
bly, combination induction therapies, such as PI + IMid 
or PI + IMid + CD38Ab, were associated with a reduced 
incidence of sEMD relapse in low-risk groups, in contrast 
to regimens consisting solely of a PI or an IMiD (Addi-
tional file 1: Fig. S3 A–D, black curves). However, combi-
nation induction failed to show a decrease in sEMD rate 

Fig. 1  Survival outcomes and sEMD relapse patterns in newly diagnosed and relapsed MM patients. A OS from MM diagnosis for the entire cohort 
of 618 patients and patients with sEMD. B Post-relapse OS for patients stratified by the presence of sEMD. C Post-sEMD OS for patients stratified 
by sEM-B or sEM-E. D Cumulative incidence of sEMD development for the entire cohort of 618 patients. E OS from the onset of sEMD for early 
versus late sEMD. F OS from MM diagnosis for early versus late sEMD
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in high-risk groups (Additional file  1: Fig. S3 A–D, red 
curves). Additional file 1: Table S2 details the occurrence 
of individual risk features within each categorized risk 
group, highlighting that 57.6% of high-risk sEMD indi-
viduals possessed DH cytogenetics, and 33.9% had EM-E 
at diagnosis. Furthermore, the model-based nomogram 
serves as an excellent complement to the five-predictor 
scoring system, enabling a quick and precise estimation 
of sEMD risk (Additional file 1: Fig. S4).

Single‑cell profiling delineated biological traits of DH 
myeloma cells
To elucidate transcriptional states in newly diagnosed 
DH myeloma at single-cell resolution, we analyzed pub-
licly available scRNA-seq data from bone marrow mono-
nuclear cells of eight healthy individuals and five DHMM 
patients, including three with concurrent 1q + and t(4;14) 
abnormalities, one with 1q + and 17p − abnormali-
ties, and one with 1q + and t(14;16) abnormalities. We 
acquired single-cell transcriptomic profiles for 66,092 
high-quality mononuclear cells, identifying six major cell 
types—T/NK cells, plasma cells, myeloid cells, B cells, 
and precursor cells—using established marker genes 
(Fig. 4A, B). UMAP analysis distinctly separated immune 
cells from plasma/myeloma cells, with high plasma cell 

(PC) scores (Fig. 4C). Our analysis encompassed 18,099 
plasma cells and 47,993 immune cells, enabling an inte-
grated examination of tumor and immune cell hetero-
geneity in DHMM. Further re-clustering of plasma cells 
revealed 10 distinct clusters, uncovering significant 
transcriptional disparities across patients (Fig.  4D, left). 
Notably, normal plasma cells (nPCs) from healthy indi-
viduals and a minor subset of MM cells co-clustered in 
cluster 7, indicating the presence of nPCs within MM 
samples (Fig. 4D, right). Hierarchical clustering based on 
gene expression linked DH myeloma cells to transcrip-
tional subtypes that corresponded with their cytogenetic 
profiles, underscored by driver gene expression (Fig. 4E). 
GSEA identified significant upregulation of biological 
processes in DH myeloma cells (Fig. 4F), such as oxida-
tive phosphorylation, cell cycle, hypoxia-inducible factor 
1 (HIF-1) signaling, proteasome, and mitogen-activated 
protein kinase (MAPK) activation, all of which have been 
linked to the progression of sEMD in previous reports 
[24, 25]. Additionally, pathways related to nuclear export 
and DNA methylation were upregulated in DH cells, 
presenting potential therapeutic targets for treating 
DH myeloma [26] and preventing sEMD [25]. Immune 
response alterations in DH cells included enhanced type I 
interferon production, known to promote Treg expansion 

Fig. 2  DH cytogenetics as a significant predictor of sEMD relapse in time-dependent univariate and multivariate analyses. A Univariate Cox 
regression analysis identifying significant predictors of sEMD relapse. B Multivariate Cox regression analysis identifying significant predictors of sEMD 
relapse. HR, hazard ratio; CI, confidence interval; HR was transformed into log10(HR) in the figure
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and immunosuppression [27]. Compared to nPCs, DH 
myeloma cells significantly overexpressed genes involved 
in anti-apoptosis/drug resistance: B-cell lymphoma 2 
(BCL2), myeloid cell leukemia 1 (MCL1), peptidylprolyl 
isomerase A (PPIA) [21], poly (ADP-ribose) polymerase 
1 (PARP1) [28]; metastasis: C–C motif chemokine ligand 
3 (CCL3) [29], Y-box binding protein 1 (YBX1) [30], 
F-box and WD repeat domain-containing 7 (FBXW7) 
[31], stathmin 1 (STMN1) [32]; and key therapeutic tar-
gets: tumor necrosis factor receptor superfamily mem-
ber 17 (TNFRSF17), G-protein-coupled receptor class C 
group 5 member D (GPRC5D), CD38, enhancer of zeste 
homolog 2 (EZH2) [25] (Fig. 4G). These findings under-
score the biological characteristics of DH myeloma cells 
possibly involved in sEMD development and propose 
potential therapeutic strategies.

Single‑cell analysis revealed dysfunctional immune cell 
features of DH patients in the bone marrow environment
We conducted an integrative analysis combining the 
CD138-negative fraction from DHMM patients and 
healthy controls into a comprehensive dataset, uncov-
ering 18 distinct cell types encompassing all principal 
mononuclear bone marrow cells and progenitor cells 

leading to myeloid/dendritic and B-cell lineages, as well 
as segregated T/NK-cell groups (Fig.  5A, B). Compara-
tive analysis between DHMM patients and healthy sub-
jects revealed marked differences in cell-type distribution 
(Fig.  5C, D), confirming a reduction in CD8 + naive 
cells and the B-cell lineage [33], alongside an increase 
in CD16 + monocytes and Treg cells [20]. While imma-
ture NKbright cells showed a marginal increase, NKdim 
effector cell populations increased in abundance [20]. 
Interestingly, no increase was observed in effector T-cell 
populations, including CD8 + memory and cytotoxic 
cells.

In our study, we explored the bidirectional influences 
between myeloma and bone marrow environment (BME) 
cells in DHMM, mediated by cytokines and their recep-
tors, which are crucial in disease progression and treat-
ment resistance [34]. By evaluating ligand-receptor pair 
expressions, we discerned enhanced interactions of 
DH myeloma cells with the myeloid lineage (CD14 + /
CD16 + monocytes and dendritic cells), CD8 + T cells, 
and NK cells (Fig.  5E). Focusing on interactions mark-
edly increased in DHMM compared to healthy individu-
als, we detected elevated expression of pro-inflammatory 
cytokines in DH cells (Fig. 5F). These include CCL3 [29], 

Fig. 3  Cumulative incidence of sEMD. A The cumulative incidence of sEMD stratified by additive scores. B The cumulative incidence of sEMD 
stratified by low (0–2 points) versus high (3–5 points) sEMD risk
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macrophage migration inhibitory factor (MIF) [35], insu-
lin-like growth factor 1 (IGF1) [36], and midkine (MDK) 
[37], with corresponding receptors predominantly found 
in myeloid and dendritic cells. Additionally, DH cells fre-
quently upregulated adhesion G protein-coupled recep-
tor E5 (ADGRE5), an adhesion receptor implicated in 
tumor invasiveness and metastasis, interacting primarily 
with CD55[38]. We also observed an increase in human 
leukocyte antigen (HLA)-I molecules such as HLA-E and 

HLA-F in DH cells, targeting inhibitory receptors killer 
cell lectin-like receptor subfamily C, member 1 (KLRC1) 
[39] and leukocyte immunoglobulin-like receptor sub-
family B member 1 (LILRB1) [40] respectively, which are 
expressed mainly in monocytes, NK, and dendritic cells. 
We further examined T/NK-cell populations for signs 
of exhaustion, characterized by upregulated inhibitory 
receptors following chronic antigen exposure. The high-
est expression of exhaustion markers was noted in Treg, 

Fig. 4  Single-cell analysis identified the biological features of double-hit (DH) myeloma cells with the propensity to progress to extramedullary 
disease. A Gene expression dot plot of major marker genes for individual cell types. B UMAP plot displaying single cells colored by major cell types. 
C UMAP plot showing single cells colored by plasma cell (PC) score based on the expression of the plasma cell markers (SDC1/CD138, TNFRSF17 
and SLAMF7). D UMAP plots demonstrating re-clustering of plasma cell (PC) colored by subclusters (left) and patients (right). The pie chart inset 
shows the nPCs fraction colored according to patient. E Pearson correlation matrix illustrating averaged gene expression levels per patient, 
with cytogenetic information on top and averaged expression of five MM driver genes at the bottom. F GSEA results displaying significant positive 
enrichment of biological processes and signaling pathways in DH myeloma cells. G Comparisons of selected gene expression related to apoptosis/
drug resistance, metastasis, and clinically important targets between normal plasma cells and DH myeloma cells
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CD8 + memory effector, and NK effector cells (Fig.  5G). 
Consistently, compromised immune function in these 
immune cells was reported during sEMD progression 
[24]. Overall, our analysis reveals that in DH patients, 
dysfunctional immune cell features may be driven by 
multiple transcriptionally overexpressed cytokines and 
surface markers in DH cells, potentially leading to an 
immunosuppressive BME.

Discussion
This study employed a time-dependent regression model 
to identify five predictors of sEMD, with a specific focus 
on one predictor: the DHMM myeloma cells and their 
associated TME, examined through scRNA-seq analy-
sis. EMD manifests in two distinct clinical phenotypes: 
primary EMD, which occurs in previously untreated 
patients with MM, and secondary EMD (sEMD), found 
in individuals with RRMM. There is variation in the 

Fig. 5  Single-cell analysis revealed cellular interactions between DH myeloma and BME cells. A UMAP plot displaying CD138-negative BME 
cells colored by cell type, with schematic overview for spatial distribution of major cell types. B Gene expression dot plot of key marker genes 
for individual BME cell subsets. C Point-density UMAP plot comparing cell composition between healthy donors (left) and DHMM (right). D Bar 
plot showing cell type fractions in healthy donors (left) and DHMM (right) individually. Compared to nPC, the red bars represent a significant 
upregulation in proportion, while the green bars indicate a significant downregulation in DHMM. E Cellular interactions between DH myeloma 
and BME cell subsets based on ligand-receptor expression, ordered by detected interactions. F Dot plot illustrating the gene expression 
of ligand-receptor pairs. Left panel depicted expression in nPCs/DH myeloma cells, while the right panel showed expression in BME cell subsets. 
Only interactions that are upregulated between DH myeloma cells and immune cell types in comparison to nPCs are displayed. Inflammatory 
cytokine interactions are highlighted in pink. G Gene expression dot plot showing exhaustion signature score levels in T/NK-cell subpopulations 
between healthy donors and DHMM
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criteria used to define EMD [41], particularly when clas-
sifying EM-B or EM-E. It is generally recognized that the 
prognosis for patients with primary EM-B is better than 
that for patients with EM-E, a finding that is supported 
both by our research [42]and others [43, 44]. However, 
this study demonstrated that in the context of sEMD, 
the OS did not significantly differ between the sEM-B 
and sEM-E groups (p = 0.210), despite a trend toward an 
even worse survival for sEM-E, corroborated by findings 
from a previous report [44]. Consequently, sEM-B war-
rants increased clinical attention. For the purposes of 
subsequent analyses, sEM-B and sEM-E are considered 
collectively.

We observed a median 22-month interval from ini-
tial MM diagnosis to sEMD development in 77 sEMD 
patients, aligning with 22.2 months reported in a recent 
publication [25]. Our study sought to elucidate risk fac-
tors for sEMD and yielded three significant insights: (i) 
Analysis indicated that patients with early sEMD relapse 
(≤ 22  months post-MM diagnosis) experienced signifi-
cantly inferior OS following sEMD relapse (5.0 months). 
Thus, our study introduces a time-dependent approach 
to predicting sEMD risk, differing from previous studies 
that utilized a logistic regression model [6, 45]. (ii) The 
research included variables such as EMD presence at 
diagnosis—distinguishing between EM-B and EM-E—as 
well as cytogenetics identified by FISH analysis, IgD mye-
loma subtype, and ASCT status, among others. Five inde-
pendent prognostic factors were identified, with different 
weights assigned to each predictor based on their respec-
tive coefficients. (iii) We proposed for the first time that 
the DH cytogenetics at diagnosis independently predict 
the development of sEMD.

Previous reports on risk factors for sEMD in MM are 
limited, yet identified risks show both concordance and 
divergence with our findings, potentially due to dif-
ferences in variables included and statistical methods 
employed. Similar to previous studies [7, 46], our find-
ings reveal that novel induction regimens do not induce 
sEMD. Furthermore, our data suggest that the utilization 
of multiple novel agents in combination, which employ 
diverse mechanisms of action, may confer a protec-
tive effect against the development of sEMD in patients 
classified as low-risk (Additional file 1: Fig. S3). We cor-
roborate the association of extensive osteolytic lesions 
with increased sEMD risk as others have described [6, 
45], suggesting that the disruption of bone integrity may 
facilitate the egress of myeloma cells from the marrow 
to extramedullary sites. This supports the observed sur-
vival benefit conferred by bisphosphonate therapy and 
denosumab [47, 48]. According to IMWG guidelines 
[49], zoledronic acid is to be recommended monthly 
for a minimum of 12  months until reaching at least 

VGPR. Denosumab can also be considered, particularly 
in patients with renal impairment. Given that 52.8% of 
patients with high-risk sEMD manifest sEMD within 
3  years, we recommend prolonged bisphosphonate or 
denosumab therapy beyond this period to strengthen 
skeletal integrity in this subset.

While EMD at diagnosis has been shown as a predictor 
for sEMD [45, 50], the significance of EM-B involvement 
at diagnosis is not fully elucidated. Our analysis revealed 
EM-B at diagnosis as a significant univariate predictor of 
sEMD, yet it did not retain significance in the multivari-
ate context. Consistently, our prior research corroborates 
ASCT can overcome the negative prognostic effect of 
EM-B [42], and the current study reinforces ASCT as a 
prophylactic factor against the sEMD. Furthermore, the 
nomogram clearly identifies EM-E at diagnosis as the 
most heavily weighted independent predictor of sEMD, 
whose influence persisted even after adjustment for high-
risk cytogenetics, ASCT, M subtype, and elevated LDH 
levels. Consistent with our prior reports of markedly 
inferior survival (median OS of 25.6 months) in EM-E at 
diagnosis [42], this observation suggests a unique patho-
biology underpinning drug resistance and metastatic 
potential in primary EM-E, warranting further inves-
tigation. In our research, IgD has been identified as an 
independent prognostic factor for sEMD, consistent with 
the previous findings that sEMD is associated with IgD 
subtype [45, 50]. Although IgD myeloma represents only 
1–2% of all NDMM cases, it is associated with short-
ened OS, with durations reported between 2 and 3 years 
[51, 52]. The IgD subtype accounts for 3.7% of our study 
population, with a higher prevalence of 7.8% within the 
sEMD group. Therefore, given the poor survival and the 
increased propensity for sEMD relapse, patients with IgD 
should be considered high-risk and treated accordingly. 
Different from others [2, 6], our data did not indicate a 
predisposition for younger patients to develop sEMD. 
The discrepancy might be attributable to the greater 
percentage of younger patients receiving ASCT, which 
serves as a sEMD-protective predictor in our cohort, 
compared to the older (58.4% vs 3.9%).

The relationship between cytogenetic abnormalities 
and the occurrence of sEMD remains ambiguous. Zan-
war et al. identified an independent association between 
the presence of 1q + and sEMD, compared to controls 
without sEMD who were matched based on the date of 
MM diagnosis [2]. Consistently, we also observed this 
association; however, 1q + did not remain an independ-
ent predictor upon adjustment for ASCT and DH cytoge-
netics in the multivariate results. This could be in line 
with our previous study demonstrating the potential of 
ASCT to negate the adverse prognostic impact of single 
1q + [15], and the fact that 29.9% of patients with 1q + in 
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the current study also harbored other high-risk chromo-
somal aberrations. This study distinguishes itself from 
other models [2, 6, 45] by considering the concurrence 
of multiple high-risk CAs, which was not uncommon 
(17.1%) in our patient population. The significance of DH 
cytogenetics in sEMD risk was firstly noted when sev-
eral DH patients, notably three with co-existing 1q + and 
t(4;14) and one with 1q + and 17p − , developed sEMD 
and subsequently succumbed post-transplant in our pre-
vious report [15]. Adding to this, this study further dem-
onstrated DH at diagnosis as a robust predictor of sEMD 
development in both univariate and multivariate models. 
In our prediction model, high-risk sEMD patients with a 
total score of 3–5 included those DH with extensive bone 
lesions, who did not undergo ASCT, or those EM-E at 
diagnosis with an IgD subtype. For those with an ultra-
high-risk sEMD scoring 4–5, such as DH patients who 
present with both EM-E and extensive bone damage at 
diagnosis, there is a 50% probability of sEMD manifes-
tation within 1  year, irrespective of ASCT intervention. 
Considering the grim outlook for high-risk sEMD, there 
is a pressing necessity to not only improve post-sEMD 
survival but also to formulate preventive therapeutic 
approaches.

Furthermore, we are curious about the mechanisms 
driving sEMD, focusing on scRNA-seq analysis of newly 
diagnosed DH specimens. This study corroborates ear-
lier findings [2, 6], demonstrating that 16% of NDMM 
patients with 1q21 + progress to sEMD. 1q21 + status 
alone does not independently predict sEMD devel-
opment, which instead results from the interaction 
between 1q21 + and MAPK pathway mutations [25], 
associated with MAPK activation [53]. Although 
mutation data were incomplete for our cohort, the 
observation that 94% (72/77) of DH patients exhib-
ited 1q21 + abnormalities in our study, coupled with 
the demonstration of MAPK pathway upregulation in 
DH samples via scRNA-seq, suggests a biological pre-
disposition towards this interaction. Additionally, we 
observed an immunosuppressive microenvironment 
in DH patients characterized by the exhaustion of 
CD8 + T and NK effector cells, which aligned with prior 
studies identifying them as key immune components in 
the extramedullary microenvironment [25] and impli-
cating their exhaustion in the development of sEMD 
[24]. This study aimed to identify high-risk sEMD 
patients at diagnosis for timely and effective interven-
tion. Within this group, DH patients represent a sub-
set that can be readily identified through standard FISH 
analysis. Though we have previously documented the 
benefits of achieving MRD negativity within 3 months 
post-transplant for DH patients, this alone is not suf-
ficient for a long-term favorable prognosis [15]. Aiming 

for sustained MRD negativity at a higher sensitivity 
threshold might be a strategy to counter the adverse 
outcomes [13]. scRNA-seq analysis highlighted upreg-
ulated targets and activated signaling pathways in DH 
samples, suggesting that a comprehensive treatment 
strategy that includes PI, IMiDs, CD38Ab, Selinexor 
(an oral exportin 1 inhibitor), and immunotherapy 
targeting B-cell maturation antigen (BCMA) and/
or GPRC5D could be employed to eliminate residual 
myeloma cells as effectively as possible. We believe 
that this approach should be extended to those at high 
risk for sEMD, who may be eligible for intensified 
treatment regimens incorporating pioneering treat-
ments such as CART and bispecific T-cell engagers as 
front-line therapies. As demonstrated in our previous 
LEGEND-2 study [54–57], BCMA-targeting CART 
(LCAR-B38M) is potentially efficient, achieving 67.6% 
MRD-negativity and 5-year OS of 49.1% in RRMM who 
had received ≥ 3 lines of prior therapy [57]. Notably, 
Jelinek et  al. reported decreased expression of thera-
peutically relevant targets such as CD38, SLAM fam-
ily member 7 (SLAMF7), GPRC5D, and Fc receptor 
homolog 5 (FcRH5) in extramedullary myeloma cells, 
with no change in BCMA expression, based on scRNA-
seq comparisons between extramedullary myeloma 
cells at relapse and bone marrow myeloma cells at 
diagnosis [25]. This observation partially supports our 
finding that a sEMD patient with liver involvement in 
our LEGEND-2 study [55] survived for 54 months after 
BCMA-CART therapy, significantly longer than typi-
cal sEMD patients. Moreover, Jelinek et  al. also high-
lighted the upregulation of methylation-associated 
genes CD70 and EZH2 in extramedullary myeloma 
cells [25], identifying potential therapeutic targets. Our 
research similarly identified methylation pathway acti-
vation and elevated EZH2 levels in DH samples at diag-
nosis, indicating that integrating demethylation agents 
into frontline therapy for DHMM patients to possibly 
prevent sEMD merits further exploration. Additionally, 
while CD38 expression decreases in extramedullary 
myeloma, CD38Ab can target CD38 + immunosup-
pressive cells, such as Tregs and NK cells [58]. Despite 
BME cells constituting a mere 10% in extramedullary 
myeloma [25], the strategic exclusion of CD38Ab from 
sEMD treatment protocols requires careful considera-
tion, especially since certain combination therapies, 
like those with EZH2 inhibitors, can enhance CD38 
expression on myeloma cells [59].

This study is limited by the small number of scRNA-seq 
samples from DH patients and the absence of mutation 
data, restricting a comprehensive understanding of DH 
myeloma pathogenesis. Our findings identify promising 
targets and pathways that may underlie the propensity 
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of DH myeloma cells to progress to sEMD, yet further 
experimental validation is necessary to elucidate these 
mechanisms. Other important limitations include the 
absence of comorbidity assessment, frailty evaluation, 
and socio-demographic prognostic factors. Furthermore, 
the percentage of patients treated with the combination 
of PI/IMiD is low due to insurance coverage constraints.

Conclusions
Moving forward,  more prospective studies including 
a baseline and dynamic comprehensive clinical, epi-
demiological, and genomic prognostic assessment are 
warranted to define strategies for sEMD prevention and 
unveil potential tailored therapeutic approaches. Echo-
ing traditional Chinese medical philosophy, “the supreme 
doctor treats before the disease manifests,” our predictive 
model for sEMD, informed by scRNA-seq of DH sam-
ples, offers prospective insights for the potential predic-
tion and prevention of sEMD.
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