
Seum et al. BMC Medicine          (2025) 23:283  
https://doi.org/10.1186/s12916-025-04107-w

RESEARCH Open Access

© The Author(s) 2025. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://creativecommons.org/licenses/by/4.0/.

BMC Medicine

Exploring metabolomics for colorectal 
cancer risk prediction: evidence from the UK 
Biobank and ESTHER cohorts
Teresa Seum1,2, Rafael Cardoso1, Joshua Stevenson‑Hoare1, Bernd Holleczek3, Ben Schöttker1, 
Michael Hoffmeister1 and Hermann Brenner1,4* 

Abstract 

Background While metabolic pathway alterations are linked to colorectal cancer (CRC), the predictive value of pre‑
diagnostic metabolomic profiling in CRC risk assessment remains to be clarified. This study evaluated the predic‑
tive performance of a metabolomics risk panel (MRP) both independently and in combination with established risk 
factors.

Methods We derived, internally validated (IV), and externally validated (EV) a metabolomics risk panel (MRP) for CRC 
from data of the UK Biobank (UKB) and the German ESTHER cohort. Baseline blood samples were assessed for 249 
metabolites using nuclear magnetic resonance spectroscopy analysis. We applied LASSO Cox proportional hazards 
regression to identify metabolites for inclusion in the MRP and evaluated the model performance using the concord‑
ance index (C‑index). We compared the performance of the MRP to an environmental risk panel (ERP; sex, age, body 
mass index, smoking status, and alcohol consumption) and a genetic risk panel (GRP; polygenic risk score).

Results The study included 154,892 participants of the UKB cohort (mean age at baseline 54.5 years; 55.5% female) 
with 1879 incident CRC and 3242 participants of the ESTHER cohort (mean age 61.5 years; 52.2% female) with 103 
CRC cases. Twenty‑three metabolites, primarily amino acid and lipid‑related metabolites, were selected for the MRP, 
showing moderate predictive performance (C‑index 0.60 [IV] and 0.54 [EV]). The ERP and GRP showed superior perfor‑
mance, with C‑index values of 0.73 (IV) and 0.69 (EV). Adding the MRP to these risk models did not change the C‑indi‑
ces in both cohorts.

Conclusions Genetic and environmental risk information provided strong predictive accuracy for CRC risk, 
with no improvements from adding metabolomics data. These findings suggest that metabolomics data may have 
limited impact on enhancing established CRC risk models in clinical practice.
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Background
Colorectal cancer (CRC) ranks as the second leading 
cause of global cancer-related deaths, accounting for 
1.9 million new cases and 904,000 deaths in 2022 [1]. 
Its gradual progression, often lacking noticeable symp-
toms in its early stages, significantly contributes to its 
high mortality rate, largely due to delayed detection 
[2]. Timely screening allows for early identification 
and removal of precancerous lesions eventually leading 
to a reduction of a substantial portion of these deaths 
[3]. Consequently, there is major interest in identifying 
reliable biomarkers that facilitate early detection and 
risk stratification.

In recent years, metabolomics, which entails the 
comprehensive analysis of small molecule metabolites 
within biological systems, has emerged as a promising 
way for identifying biomarkers for various diseases [4]. 
Metabolomics profiling enables the quantification of 
numerous biomarkers across diverse biological path-
ways, influenced by genetic variations and environ-
mental exposures, such as diet and smoking, in a single 
comprehensive measurement [5]. In the context of 
CRC, key pathways such as lipid metabolism, inflam-
mation, and microbial metabolism are thought to 
play critical roles in tumor development and progres-
sion, providing a mechanistic basis for incorporating 
metabolomics into CRC risk prediction [6].

Despite systematic reviews supporting the utility of 
metabolomics for early CRC detection, existing studies 
were predominantly conducted in clinical settings, uti-
lizing samples from diagnosed cases [6, 7]. Few stud-
ies have explored biomarkers in pre-diagnostic settings 
such as screening or prospective cohorts [8]. Moreo-
ver, the lack of standardization in procedures and bio-
specimen selection and the lack of external validation 
of promising results underscore the need for further 
work before establishing a standard clinical metabo-
lomics biomarker panel for CRC early detection or risk 
stratification [6, 7].

This study employed a rigorous protocol includ-
ing discovery, internal, and external validation to 
derive and validate a metabolomics risk panel, based 
on 249 metabolite biomarkers obtained through high-
throughput nuclear magnetic resonance techniques, 
for CRC risk prediction in two large prospective 
cohorts of older adults, the UK Biobank and the Ger-
man ESTHER cohort. We compared the effectiveness 
of metabolomics in CRC risk prediction with estab-
lished panels for CRC risk prediction, a panel of con-
firmed environmental risk factors and a polygenic risk 
score [9].

Methods
The UK Biobank cohort
The UK Biobank (UKB) study is a population-based 
cohort study with over half a million adults recruited 
at ages 40–69 years across 22 assessment centers in 
England, Scotland, and Wales. Detailed study protocols 
are available on the UKB website (https:// www. ukbio 
bank. ac. uk/). In brief, during the baseline recruitment 
visit between 2006 and 2010, biological samples (blood, 
stool, and urine) were collected in addition to infor-
mation on sociodemographic, health and medical his-
tory, anthropometric, and lifestyle factors. Follow-up of 
health-related outcomes was conducted through link-
age to electronic health records, including death and 
cancer from the UK National Health Service (for more 
details see Additional file 1: Additional Methods).

The ESTHER cohort
The ESTHER study (German full name: Epidemiologis-
che Studie zu Chancen der Verhütung, Früherkennung 
und optimierten Therapie chronischer Erkrankungen 
in der älteren Bevölkerung) is a statewide population-
based prospective cohort study conducted in Saarland, 
Germany. Details of the ESTHER study have been pub-
lished elsewhere [10]. In brief, 9949 women and men 
aged 50–75 years were recruited between 2000 and 
2002 by general practitioners (GPs) during a routine 
health at baseline, sociodemographic characteristics, 
lifestyle factors, and health-related information was 
obtained by standardized self-administered participant 
and GPs questionnaires, and biological samples (blood, 
stool, and urine) were collected. Follow-up was per-
formed with respect to total and cause-specific mortal-
ity, repeat questionnaires to participants and GPs, and 
record linkage with the Saarland Cancer Registry with 
respect to cancer incidence (see Additional file 1: Addi-
tional Methods).

Data ascertainment and laboratory measurements
Demographic and lifestyle information was ascertained 
at baseline through self-administered questionnaires 
and/or physician reports. Laboratory measurements, 
i.e., metabolomics analysis and genotyping, were con-
ducted on blood samples which were obtained at 
baseline and have been previously described [11–16]. 
Details regarding data ascertainment and laboratory 
measurements can be found in Additional file 1: Addi-
tional Methods.

Statistical analysis
For both cohorts, only participants with metabolomics 
and genetic measurements were included. Furthermore, 

https://www.ukbiobank.ac.uk/
https://www.ukbiobank.ac.uk/
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participants with prevalent CRC at baseline, with a his-
tory of CRC or bowel cancer screening, and those with 
a family history of CRC (defined as father, mother, or 
siblings ever diagnosed with CRC) were excluded 
(Fig. 1) to ensure the study represented an average-risk 
population for CRC screening.

Cohort characteristics were summarized by descrip-
tive statistics. Continuous variables were described with 
mean (standard deviation, SD), and categorical variables 
were described with numbers and percentage. The values 
of all metabolites were log1p-transformed followed by a 
standardization for the following analyses.

The flow diagram of the analyses is shown in Fig.  2. 
For the main analysis, the UKB cohort participants were 
randomly split into a training set (70%) and a testing set 
(30%) for the derivation and internal validation of the 
metabolomics risk panel (MRP), respectively. In the dis-
covery phase, the UKB training set was used to select 
the metabolites for the MRP employing a least absolute 
shrinkage and selection operator (LASSO) Cox propor-
tional hazards (PH) regression model. This model, which 
facilitates the analysis of correlated variables, applied an 
L1-norm penalty to reduce the absolute values of the 
beta coefficients, setting those below a specified thresh-
old (lambda) to zero. The optimal lambda was identified 
via tenfold cross-validation. Metabolites consistently 
selected in ≥ 95% of 100 iterations were included in 
the final MRP. To assess multicollinearity between the 

selected metabolites, we calculated variance inflation 
factors (VIF) and Pearson correlation coefficients in the 
training set. A VIF above 5 or a Pearson correlation coef-
ficient higher than 0.8 indicated high multicollinearity 
among metabolites.

Cause-specific Cox PH models were employed to 
assess the association between the selected metabolites 
and CRC risk. The time at study entry was defined as the 
age at recruitment, while exit time was determined by the 
age at incident CRC diagnosis, death, or the last date at 
which follow-up was considered complete. Hazard ratios 
(HR) with 95% confidence intervals (CI) were calculated 
per one standard deviation (SD) increase of the log1p-
transformed value for each individual selected metabo-
lite of the MRP. Multiple testing corrections were applied 
using false-discovery rate (FDR) correction [17].

In the validation phase, the MRP was internally vali-
dated using the UKB testing set and externally validated 
within the ESTHER cohort. Performance comparisons 
for CRC risk prediction were made between the MRP, a 
genetic risk panel (GRP) based on a polygenic risk score, 
and an environmental risk model (ERP) incorporating 
factors such as age, sex, body mass index (BMI), smok-
ing status, and alcohol consumption, selected based 
on prior evidence [18]. Additionally, combinations of 
these models (MRP + GRP, MRP + ERP, GRP + ERP, and 
MRP + GRP + ERP) were evaluated. The predictive accu-
racy of each model was assessed using concordance 

Fig. 1 Flow diagram showing selection of study participants from the UK Biobank and the ESTHER cohorts. CRC, colorectal cancer
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index (C-index), and the stability and precision of the 
C-indices were further evaluated through bootstrap res-
ampling of 1000 samples to calculate 95% CI. Further-
more, we repeated the analysis by only including 5-year 
and 10-year follow-up periods to analyze the model per-
formance over these specific time frames.

Sensitivity analyses
To determine whether incorporating the selected metab-
olites of the MRP improved existing risk prediction pan-
els (GRP and ERP), we evaluated the net reclassification 
index (NRI) and the integrated discrimination improve-
ment (IDI), when adding the MRP to the GRP and the 
ERP individually, as well as to a combined GRP and ERP 
model. Additionally, we examined the discriminatory 
ability of the MRP within subgroups of the ERP by calcu-
lating the C-index separately for sex (female, male), age 
(< 60 years, ≥ 60 years), BMI (< 25, 25–30, ≥ 30 kg/m2), 
smoking status (never, former, current), and alcohol con-
sumption (abstainer/low, moderate/ high).

To assess whether the association between MRP and 
CRC risk differed across these subgroups, we performed 
stratified Cox regression analyses to estimate HRs 
within each subgroup. Furthermore, interaction terms 
(MRP × age, MRP × sex, MRP × BMI, MRP × smoking sta-
tus, MRP × alcohol consumption) were incorporated into 
Cox regression models to test for effect modification.

Analyses were conducted using R statistical software, 
version 4.3.1. Tests for statistical significance were two-
sided with an alpha value of 0.05.

Results
Baseline characteristics of the study participants
A total of 154,892 eligible participants from the UKB 
cohort and 3242 participants from the ESTHER cohort 
were included in this analysis (Fig. 1). The baseline char-
acteristics of the study population are summarized in 
Table  1, stratified by cohort. Additionally, the distribu-
tion of the training and testing sets of the UKB cohort 
is described in Additional file  2: Table  S2. Participants 
in the ESTHER cohort were slightly older than those in 
the UKB cohort (mean ages 61.5 and 54.5, respectively). 
Over a median follow-up period of 12.1 years, 1879 CRC 
cases were observed in the UKB cohort. In the ESTHER 
cohort, 103 CRC cases occurred over a median follow-up 
period of 17.5 years. Median time from baseline to diag-
nosis was 6.9 years for CRC cases in the UKB cohort and 
7.6 years for CRC cases in the ESTHER cohort. Nota-
bly, both cohorts included more women than men, but 
the majority of cases were men (55.3% in UKB, 66.0% in 
ESTHER). CRC cases in both cohorts furthermore had a 
higher mean BMI, more often smokers, and consumed 
more alcohol.

Fig. 2 Data processing and analyses flow diagram. The figure summarizes the development and validation of the metabolomics risk panel (MRP). 
Participants from the UK Biobank were split into a training set (70%) and a testing set (30%). In the training set, LASSO Cox regression identified 
predictive metabolites, and the MRP was validated in the testing set and the ESTHER cohort. Predictive performance was assessed using C‑index 
and compared to the genetic risk panel (GRP) and environmental risk panel (ERP), individually and in combination. CRC, colorectal cancer



Page 5 of 11Seum et al. BMC Medicine          (2025) 23:283  

Construction of the metabolite‑based risk panel
In the construction of the MRP, 25 metabolites (mainly 
subclasses of amino acids, glycolysis-related metabolites, 
ketone bodies, and relative lipoprotein lipid concentra-
tions) were selected as components of the MRP through 
LASSO. To ensure the robustness of the MRP and 
minimize redundancy among selected metabolites, we 
assessed multicollinearity using VIF analysis and Pear-
son correlation in the UKB training set. The total con-
centration of branched-chain amino acids (VIF = 21.6) 
and valine (VIF = 21.9) exhibited the strongest multicol-
linearity. This was followed by the cholesteryl esters to 
total lipids ratio in very small very low-density lipopro-
teins (VLDL) (VIF = 18.9) and the triglycerides to total 
lipids ratio in very small VLDL (VIF = 15.9). Pearson cor-
relation matrix (Additional file  2: Fig. S1) showed simi-
lar patterns, with strong correlations between the total 
concentration of branched-chain amino acids and valine 
(r = 0.97), as well as between the triglycerides to total 
lipids ratio and the cholesteryl esters to total lipids ratio 
in very small VLDL (r = − 0.95).

To address multicollinearity, the metabolites with the 
highest VIF from each correlated pair were excluded, i.e., 
valine and the cholesteryl esters to total lipids ratio in 
very small VLDL, resulting in a final MRP of 23 metab-
olites. After exclusion, all VIF values were < 5, and no 
strong correlations remained.

The HRs of the selected metabolites included in the 
MRP are shown in Fig. 3 and Additional file 2: Table S3. 
After adjusting for multiple testing, in the UKB test-
ing set, three metabolites were significantly inversely 
associated with CRC, while four metabolites showed a 
significant positive association. In the ESTHER cohort, 
five metabolites displayed a significant inverse associa-
tion with CRC. The directionality of the significant asso-
ciations in the UKB and ESTHER cohort was the same in 
both studies.

Internal and external validation of metabolomics risk panel 
and comparison
Table  2 depicts the results of the internal and external 
validation of the risk panels as well as their combinations. 

Table 1 Baseline characteristics of the study participants, by cohort

BMI Body mass index, CRC  Colorectal cancer, No Number, SD Standard deviation

p values were obtained from t-test for continuous variables and from chi-squared test for categorical variables

Baseline characteristics UK Biobank cohort ESTHER cohort

Participants 
(n = 154,892)

Cases 
(n = 1879)

Non‑cases 
(n = 153,070)

p value Participants 
(n = 3242)

Cases 
(n = 103)

Non‑cases 
(n = 3139)

p value

Sex, No. (%)  < 0.001  < 0.001

 Male 68,952 (44.5) 1040 (55.3) 67,912 (44.4) 1551 (47.8) 68 (66.0) 1483 (47.2)

 Female 85,940 (55.5) 839 (44.7) 85,101 (55.6) 1691 (52.2) 35 (34.0) 1656 (52.8)

Age at blood collection, 
in years

 < 0.001  < 0.001

 Mean (SD) 54.5 (7.98) 59.12 (7.20) 54.45 (7.97) 61.5 (6.62) 63.65 (6.04) 61.42 (6.63)

BMI (kg/m2)  < 0.001 0.024

 Mean (SD) 27.35 (4.82) 28.04 (4.95) 27.35 (4.81) 27.68 (4.27) 28.63 (4.24) 27.65 (4.27)

 Unknown 567 4 563 4 – 4

Smoking status, No. (%)  < 0.001 0.015

 Never 88,045 (56.8) 887 (47.2) 87,158 (57.0) 1558 (48.1) 44 (42.7) 1514 (48.2)

 Former 49,639 (32.1) 776 (41.3) 48,863 (31.9) 1068 (32.9) 47 (45.6) 1021 (32.5)

 Current 17,163 (11.1) 216 (11.5) 16,947 (11.1) 556 (17.2) 11 (10.7) 545 (17.4)

 Unknown 45 – 45 60 1 59

Alcohol consumption, 
No. (%)

 < 0.001 0.313

 Abstainer 48,084 (31.0) 517 (27.5) 47,567 (31.1) 1180 (28.9) 25 (22.6) 890 (29.1)

 Low 61,727 (39.9) 760 (40.4) 60,967 (39.9) 2308 (56.5) 68 (65.3) 1796 (56.2)

 Medium 26,554 (17.1) 330 (17.6) 26,224 (17.1) 199 (4.8) 4 (4.0) 155 (4.9)

 High 18,527 (12.0) 272 (14.5) 18,255 (11.9) 63 (1.5) 3 (3.2) 41 (1.5)

 Unknown – – – 260 3 257

Follow‑up time to CRC 
diagnosis, in years

–  –

 Median (range) – 6.85 (0–15) – – 7.63 (0–18) –
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The internal validation of the MRP yielded a C-index of 
0.602 (95% CI, 0.577, 0.625). External validation in the 
German ESTHER cohort resulted in a C-index of 0.542 
(95% CI, 0.481, 0.605).

The internal validation of the ERP (including age, sex, 
BMI, smoking status, and alcohol consumption) yielded 
a C-index of 0.688 (95% CI, 0.664, 0.710). External vali-
dation in the ESTHER cohort resulted in a C-index of 
0.638 (95% CI, 0.587, 0.688). The GRP yielded a C-index 
of 0.633 (95% CI, 0.608, 0.655) for the internal validation 
set and a C-index of 0.636 (95% CI, 0.578, 0.687) in the 
external validation set.

In a further analysis, four combined panels were cre-
ated by adding up the information of the three individ-
ual panels. The combination of MRP and GRP yielded 
the lowest of the combined panels, with a C-index in the 
internal validation cohort of 0.665 (95% CI, 0.641, 0.685) 
and a C-index of 0.633 (95% CI, 0.576, 0.689) in the exter-
nal validation cohort. The combination of MRP and ERP 
yielded a C-index in the internal validation cohort of 
0.688 (95% CI, 0.665, 0.710) and a C-index of 0.647 (95% 
CI, 0.596, 0.695) in the external validation cohort. Both 
the combination of GRP and ERP and the combination of 
all panels (MRP, GRP, and ERP) yielded similar C-indices 
of 0.725 (95% CI, 0.703, 0.746) and 0.726 (95% CI, 0.704, 
0.746) in the internal validation cohort. In the external 
validation cohort, the combination of all tree panels had 
a slightly higher C-index of 0.692 (95% CI, 0.641, 0.738) 
than the C-index of the GRP + ERP model (0.688 [95% CI, 
0.638, 0.734]).

The results of the analysis by 5-year and 10-year fol-
low-up are presented in Additional file  2: Table  S4. For 
the internal validation, when only including 5-year and 
10-year follow-ups, C-indices were slightly lower, the 
shorter the follow-up time, with a C-index of 0.590 (95% 
CI, 0.551, 0.624) and 0.603 (95% CI, 0.578, 0.630) for MRP 
in the 5-year and 10-year follow-up analyses, respectively. 
Of all models, the model incorporating GRP and ERP 
showed the highest predictive accuracy with a C-index 
of 0.742 (95% CI, 0.705, 0.777) over 5 years and 0.727 
(95% CI, 0.703, 0.749) over 10 years in internal valida-
tion. In the external validation, the most comprehensive 

model, including MRP, GRP, and ERP, achieved the high-
est C-index of 0.739 (95% CI, 0.654, 0.820) for 5-year and 
0.746 (95% CI, 0.658, 0.771) for 10-year prediction.

Comparative analysis of model performance
We assessed the predictive performance of different mod-
els by evaluating the NRI and IDI, analyzing the impact 
of adding the MRP to the GRP, the ERP, and their combi-
nation (Additional file 2: Table S5). In the internal valida-
tion, adding MRP to GRP significantly improved overall 
reclassification (NRI: 0.189, 95% CI: 0.120 to 0.258) and 
discrimination (IDI: 0.045, 95% CI: 0.036, 0.053), driven 
mainly by better classification for non-events (NRI for 
non-events: 0.764, 95% CI: 0.758, 0.770). Adding MRP 
to ERP showed high improvement for events (NRI: 
0.992, 95% CI: 0.982, 1.003) but a worse performance 
for non-events (NRI: − 0.998, 95% CI, − 0.999, − 0.997). 
Combining GRP, MRP, and ERP yielded no signifi-
cant reclassification improvement in comparison with 
GRP + ERP (NRI: − 0.005, 95% CI, − 0.015 to 0.005).

For external validation, adding MRP to GRP showed 
no reclassification improvement (NRI: 0.022, 95% 
CI, − 0.099, 0.144) but a significant change in discrimi-
nation (IDI: 0.021, 95% CI, 0.002, 0.040). In addition, the 
combined model of all 3 panels demonstrated no over-
all improvement in reclassification (NRI: − 0.009, 95% 
CI, − 0.047, 0.029) over GRP + ERP but a slight improve-
ment in discrimination (IDI: 0.004, 95% CI, 0.002, 0.006).

Sensitivity analysis
Stratified analyses by ERP risk factors showed consistent 
discriminatory ability of MRP across subgroups in the 
internal validation cohort (Additional file  2: Table  S6). 
Differences observed in the ESTHER cohort were accom-
panied by small case numbers, limiting interpretability 
(e.g., C-index for alcohol consumption: abstainer/low 
0.516 [95% CI, 0.450, 0.576], 96 CRC cases; medium/high 
0.721 [95% CI, 0.523, 0.895], 7 CRC cases).

Further examining potential effect modification, 
Cox regression analyses showed a positive associa-
tion between MRP and CRC risk across all ERP-defined 
subgroups in the UKB testing set, with a significant 

Fig. 3 Hazard ratios (95% CI) for the selected metabolites, by cohort. Cause‑specific Cox proportional hazards models were used to estimate 
hazard ratios (HR) and 95% confidence intervals (CI) for the association between selected metabolites and CRC risk. Age at recruitment 
was defined as study entry, and exit time was determined by CRC diagnosis, death, or end of follow‑up. HRs were reported per 1‑SD increase 
of the log1p‑transformed value for each metabolite. Multiple testing correction was applied using the Benjamini–Hochberg method. Full dots 
indicate metabolites that remained significant after correction, while hollow dots indicate non‑significant associations. BCAA branched‑chain amino 
acids, C cholesterol, CE cholesteryl esters, CI confidence interval, FA fatty acids, FB fluid balance, FC free cholesterol, Glycolysis glycolysis‑related 
metabolites, HDL high‑density lipoproteins, HR hazard ratio, Ketone ketone bodies, L large, LA linoleic acid, LDL low‑density lipoproteins, M 
medium, PL phospholipids, S small, SD standard deviation, TG triglycerides, UKB UK Biobank, VLDL very low‑density lipoproteins, XL very large, XS 
very small, XXL extremely large, % ratio

(See figure on next page.)
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Fig. 3 (See legend on previous page.)
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interaction for alcohol consumption (interaction p < 0.05) 
(Additional file 2: Table S7). The association was stronger 
in the medium/high consumption group (HR 1.73 [95% 
CI, 1.39–2.17]) than in the abstainer/low group (HR 1.26 
[95% CI, 1.17–1.36]). In the ESTHER cohort, no statisti-
cally significant associations or interaction effects were 
detected.

Discussion
Colorectal cancer stands as a major global health chal-
lenge, requiring innovative strategies for early detection 
and risk prediction. While previous studies have identi-
fied metabolic pathway alterations associated with CRC, 
the translation into validated biomarkers panels has been 
scarce [7]. This study draws upon data from the UKB and 
the German ESTHER cohort to study the associations of 
metabolites with incident CRC and derive a prediction 
panel consisting of selected metabolites. We generated 
a metabolomics risk panel consisting of 23 metabolites 
associated with CRC risk using a LASSO Cox PH regres-
sion approach. This panel was validated internally within 
the UKB and externally in the ESTHER cohort. The indi-
vidual performance of the metabolomics risk panel was 
inferior to the panels that incorporated conventional risk 
factors such as sex, age, BMI, smoking status, and alco-
hol consumption, or genetic information through poly-
genic risk scores. Especially the environmental risk panel 
showed a particularly strong performance, underscor-
ing the relevance of established risk factors in predict-
ing CRC risk. The combination of the environmental and 
genetic risk panels achieved moderate discriminatory 
accuracy, with C-index values exceeding 0.7 in the inter-
nal validation. Adding metabolomics to the combina-
tion of the environmental and genetic risk panels did not 

resulted in an improvement in performance. This indi-
cates that a multi-dimensional approach that includes 
environmental and genetic data may offer the best strat-
egy for CRC risk prediction.

There is a limited number of studies using pre-diagnos-
tic metabolite panels for the prediction of CRC risk. Loft-
field et al. conducted a study in a US-based cohort with 
a 10-year interval between blood draw and CRC diagno-
sis, focusing on short-chain fatty acids and bile acids [19]. 
They reported odds ratios (95% CIs) of 0.55 (0.31–0.98) 
for a panel consisting of six short-chain fatty acids and 
1.95 (1.04–3.66) for a panel of 15 bile acids when compar-
ing the highest compared with lowest quartile. However, 
this study lacked external validation, and the associations 
were observed for female participants only. A study in 
Asia of 250 incident CRC cases showed a moderate dis-
criminatory accuracy (AUC = 0.76) for a panel of nine 
metabolites [20, 21], higher than in our study, though 
its small sample size may affect the findings’ robustness. 
The intriguing results of this study from Asia are yet to be 
confirmed by external validation in independent cohorts. 
In particular, further research is needed if and to what 
extent the proposed signatures may enhance risk pre-
diction beyond risk prediction by established CRC risk 
factors.

A limited number of studies have also compared 
metabolite-based models to existing risk panels for CRC. 
The Nightingale Health Biobank Collaborative Group 
conducted the only known study comparing a polygenic 
risk score to a metabolite-based model, finding lower 
hazard ratios for metabolomics high-risk groups than 
genetic high-risk groups for CRC [22]. The only study 
comparing a lifestyle-based model to a metabolite-based 
model was performed by Rothwell et  al. [23]. However, 

Table 2 Performance of the individual and combined risk prediction panels, by internal and external validation

Model performance was assessed using the concordance index (C-index), with 95% confidence intervals obtained through bootstrap resampling (1000 iterations). The 
UKB training set was used to develop the models, which were internally validated in the UKB testing set and externally validated in the ESTHER cohort

CI Confidence interval, UKB UK Biobank

Internal validation (UKB testing set, n = 46,467) External validation 
(ESTHER cohort, 
n = 3242)

C‑index (95% CI)

Individual panels

 Metabolomics risk panel (MRP) 0.602 (0.577, 0.625) 0.542 (0.481, 0.605)

 Environmental risk panel (ERP) 0.688 (0.664, 0.710) 0.638 (0.587, 0.688)

 Genetic risk panel (GRP) 0.633 (0.608, 0.655) 0.636 (0.578, 0.687)

Combined panels

 MRP + GRP 0.665 (0.641, 0.685) 0.633 (0.576, 0.689)

 MRP + ERP 0.688 (0.665, 0.710) 0.647 (0.596, 0.695)

 GRP + ERP 0.725 (0.703, 0.746) 0.688 (0.638, 0.734)

 MRP + GRP + ERP 0.726 (0.704, 0.746) 0.692 (0.641, 0.738)
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opposite to our environmental risk score, they examined 
the positive effects of healthy lifestyle behaviors, such 
as weight maintenance and physical activity, as recom-
mended by the World Cancer Research Fund/American 
Institute for Cancer Research guidelines. They showed 
that signatures of fatty acids and endogenous metabolites 
had a stronger association with CRC risk than the adher-
ence to these health-promoting guidelines [23]. These 
promising results also still require external validation in 
independent cohorts to confirm their generalizability.

Although metabolomics alone may not currently sur-
pass the predictive accuracy of genetic and environ-
mental factors for CRC risk, this approach still holds 
significant value. The panel of pre-diagnostic metabolites, 
even if less predictive, shows that metabolic pathways 
may be linked to CRC development. These insights could 
be crucial for future research into disease mechanisms 
and therapeutic targets. Metabolites associated with 
CRC risk, including glucose and amino acids such as gly-
cine, alanine, tyrosine, and glutamine, are all key players 
in cellular energy metabolism and proliferation, fueling 
cancer cell proliferation and growth through metabolic 
reprogramming [24, 25]. Additionally, lipids such as cho-
lesterol, triglycerides, and phospholipids, represented as 
relative lipoprotein lipid concentrations in the panel, also 
have been implicated in CRC development and progres-
sion [26, 27]. These insights offer a deeper understanding 
of the metabolic pathways of cancer [28].

Strengths and limitations
This study represents one of the largest CRC metabo-
lomics investigations to date, incorporating a substantial 
number of CRC cases and non-cases from two popula-
tion-based cohorts. The prospective design, featuring 
samples collected at various time points preceding case 
diagnosis, adds robustness to the study’s findings. The 
comprehensive validation approach, encompassing both 
internal validation within the UKB cohort and external 
validation in the ESTHER cohort, ensures the reliability 
of our findings within the same population, and external 
validation ensuring the generalizability to our results. 
This dual-validation strategy addresses concerns about 
overfitting and enhances the reliability of our conclusions 
across diverse populations. Moreover, the application 
of Nuclear Magnetic Resonance (NMR) spectroscopy, 
a minimally invasive and high-throughput method for 
identifying metabolomics biomarkers, contributes to 
the methodological rigor of the investigation. The use of 
rigorous statistical methods, like the LASSO Cox pro-
portional hazard regression model in comparison to con-
ventional Cox models, further supports the certainty of 
the evidence presented.

While this study significantly advances our understand-
ing of the pre-diagnostic metabolomics panels linked to 
CRC, it is essential to acknowledge certain limitations. 
The Nightingale metabolomics panel, based on the NMR 
profiling algorithm from a single company, includes a 
limited selection of identified metabolites, constrain-
ing the comprehensiveness of our findings. Sensitivity 
of metabolomics to pre-analytical sample management, 
influenced by factors such as freeze–thaw cycles and 
storage conditions, represents a noteworthy limitation 
[29]. However, the stringent protocols followed by the 
UKB cohort and the ESTHER cohort help mitigate some 
of these concerns. The reliance on self-reported data for 
lifestyle-related factors and minor changes in the ques-
tionnaire over time introduce additional limitations. 
Furthermore, the predominantly white European ethnic-
ity, higher socioeconomic status of participants, and the 
generally healthier profile of the UKB participants may 
restrict the generalizability, while the age of the ESTHER 
cohort could limit insights into early-onset CRC risk.

Conclusions
Despite the potential merits of metabolomics studies in 
pointing to potentially relevant etiological or pathomech-
anistic pathways, the contribution of metabolomics pan-
els for enhanced risk stratification remains limited. Our 
findings, based on a robust internal and external valida-
tion framework, provide insights into the relationship 
between metabolites and CRC risk. However, the inclu-
sion of metabolites alongside environmental or genetic 
risk panels did not lead to substantial improvement in 
predictive accuracy. This suggests that while metabo-
lomics may offer some insights, clinical relevance in CRC 
risk assessment requires further investigation. Further 
research potentially including more specific and precise 
metabolomics phenotyping, along with complementary 
and more comprehensive -omics approaches in large 
cohorts, including rigorous internal and external valida-
tion, may be needed to unravel clinically relevant contri-
butions of metabolomics in CRC risk assessment.
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