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Abstract 

Background  Hepatocellular carcinoma (HCC) is one of the most common cancers. Early detection of HCC helps 
improve the patients’ 5-year survival rate. Our goal was to identify superior methylation biomarkers to develop 
a methylation-specific quantitative PCR (MS‒qPCR) assay.

Methods  A five-phase case–control study identified HCC methylation biomarkers via capture sequencing, TCGA/
RNA-seq filtering, technical (MS-qPCR/Sanger) and biological (quadruplex MS-qPCR) validation. Methylated biomark-
ers were selected based on differential methylation expression using a tissue discovery cohort (43 HCC, 32 normal) 
and validated in plasma validation cohorts (Phase 1: 53 HCC, 52 cirrhosis, 20 benign, 50 healthy; Phase 2: 67 HCC, 81 
cirrhosis). Then, the final assay’s HCC detection performance was compared with existing blood-based surveillance 
methods.

Results  Two methylated genes, OSR2 and TSPYL5, and a novel internal reference gene, SDF4, were identified 
and developed into an MS‒qPCR assay named Qliver. Qliver had an AUC of 0.955 (95% CI: 0.924–0.987) for distinguish-
ing HCC patients from non-HCC patients in the Phase 1 plasma cohort, with a sensitivity of 88.68% (95% CI: 76.97%-
95.73%) and a specificity of 89.34% (95% CI: 82.47%-94.20%), and 0.958 (95% CI: 0.927–0.989) for distinguishing HCC 
patients from cirrhosis patients in the Phase 2 plasma cohort, with a sensitivity of 88.06% (95% CI: 77.82%–94.70%) 
and a specificity of 92.59% (95% CI: 84.57%–97.23%). For the Phase 1 plus Plasma 2 cohort, Qliver had an AUC 
of at least 0.958 for detecting HCC in healthy individuals, cirrhosis patients and patients with benign liver diseases, 
which was superior to that of the GALAD score (AUC: 0.777 to 0.849). For BCLC stage 0 and A HCC patients, the sen-
sitivity of Qliver ranged from 62.50% (95% CI: 24.49%–91.48%) to 72.73% (39.03%–93.98%), with a specificity of 90%. 
Overall, Qliver was superior to the AFP, AFP-L3, DCP and the GALAD score in terms of cirrhosis history, tumor stage, 
tumor size and tumor count.
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Conclusions  Qliver demonstrated superior performance in detecting HCC compared with currently widely used 
blood biomarkers, suggesting its potential clinical benefit in HCC surveillance in high-risk populations.

Keywords  Hepatocellular carcinoma, DNA methylation, Early detection, Cirrhosis, Biomarker

Background
Primary liver cancer is a common malignant tumor 
worldwide, ranking sixth in incidence and third in mor-
tality among cancers [1]. Hepatocellular carcinoma 
(HCC) accounts for 75% to 85% of primary liver cancers 
[1]. HCC patients diagnosed at early stages can achieve 
a 70% 5-year survival rate through transplant or resec-
tion, whereas those with advanced HCC who are only 
eligible for palliative treatments have a medium survival 
rate of less than one year [2, 3]. Therefore, early detection 
of HCC can significantly improve patient survival rates. 
Liver ultrasound (US) is the recommended strategy for 
HCC surveillance in high-risk populations and is inex-
pensive but less effective in detecting early-stage HCC, 
with a sensitivity of 84% (95% confidence interval [CI]: 
76%–92%) for any stage HCC detection, but only 47% 
(95% CI: 33%–61%) for early-stage HCC [4]. US perfor-
mance depends on the examiner’s experience, and obesity 
may further reduce its sensitivity [5]. Serum alpha-feto-
protein (AFP) is insufficient for screening for HCC, with 
a sensitivity of 25%−65% and a specificity of 80%−94% at 
a cutoff of 20 ng/mL, and only approximately 60%−80% 
of HCC patients have elevated AFP levels, resulting in 
a large margin for false negatives [6]. The sensitivity of 
combined US and AFP for detecting early HCC reached 
63% (95% CI: 48%–75%) [4], but there is still room for 
improvement. The GALAD score, a blood biomarker-
based model that combines age, sex, α-fetoprotein (AFP), 
the lens culinaris agglutinin-reactive fraction of AFP 
(AFP-L3) and des-gamma-carboxyprothrombin (DCP), 
outperformed US in detecting early-stage HCC, with an 
AUC of 0.92 (95% CI: 0.88–0.96; cutoff: 1.18, sensitivity 
92%, specificity 79%) [7]. Although the GALAD score 
performs well in the early detection of HCC, its perfor-
mance still needs to be fully validated in the Chinese 
population, as chronic HBV infection is the main cause 
of HCC. Therefore, there is an urgent need for a nonin-
vasive HCC detection method suitable for the Chinese 
population with high sensitivity and specificity.

DNA methylation is an epigenetic mechanism that 
regulates gene expression [8]. Hypermethylation of 
tumor suppressor genes is an early event in the car-
cinogenesis of many cancers [9, 10]. Circulating cell-
free DNA (cfDNA) is an extracellular nucleic acid 
fragment released from necrotic, apoptotic or viable 
cells [11]. Circulating tumor DNA (ctDNA) originates 
from tumor cells and accounts for a small fraction of 

cfDNA. Studies have shown that the methylation level 
of ctDNA in plasma is positively correlated with the 
number of primary tumor cells [12]. cfDNA meth-
ylation patterns have great potential as biomarkers for 
noninvasive cancer screening and monitoring [10, 13]. 
Guo et  al. [14] developed a targeted methylation cap-
ture sequencing panel based on 283 CpG sites that has 
high accuracy in detecting HCC, with an AUC of 0.957 
(sensitivity 90%, specificity 97%), but its workflow is 
cumbersome and costly. The use of a methylation-spe-
cific quantitative PCR (MS‒qPCR) assay that combines 
two genes, RNF135 and LDHB, is less expensive, but 
its performance in detecting HCC in high-risk groups 
(AUC = 0.7306; 95% CI: 0.6955–0.7658) needs to be 
improved [15].

This study aimed to screen methylated genes with 
excellent performance, develop a cost-effective MS‒
qPCR assay for HCC detection, and validate its perfor-
mance by comparing it with currently used biomarkers, 
including AFP, AFP-L3, DCP and the GALAD score.

Methods
Patient samples and characteristics
Patients aged 18  years or older with clinically diag-
nosed HCC in TNM stages I to III without treatment 
and individuals with liver cirrhosis or benign liver 
tumors such as hepatic adenomas, liver focal nodules 
or hepatic hemangiomas who were negative for HCC 
following disease surveillance were enrolled in the 
study. Twelve HCC patients with unknown TNM stage 
and 100 healthy volunteers without liver cirrhosis were 
also included. Frozen tissue and whole-blood samples 
from HCC patients and all non-HCC subjects and 
formalin-fixed paraffin-embedded (FFPE) slides from 
breast cancer and lung cancer patients were collected 
from Fujian Cancer Hospital. Whole blood samples of 
8 to 10 mL were collected from each participant using 
Cell-Free DNA BCT® tubes (Streck, USA) and shipped 
to the laboratory at ambient temperature before plasma 
separation. Patient characteristics and demographic 
information are provided in Additional file 1: Table S1. 
All procedures were approved by Medical Ethics Com-
mittee of the Fujian Cancer Hospital (K2022-103–01). 
All research was conducted in accordance with the 
Declaration of Helsinki and the Declaration of Istanbul. 
Written consent was given by all the subjects.
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Study design
This study was conducted through five sequential case‒
control experiments (Fig. 1). A capture sequencing panel 
was employed to identify differentially methylated genes 
in tissue and validated in plasma samples from HCC 
patients and control subjects. These genes were then fil-
tered through the TCGA 450  K and TCGA RNA-seq 
databases to select genes that exhibited high methylation 
in HCC samples and showed significant changes in RNA 
expression level compared with healthy. The selected 
genes were subsequently validated using MS-qPCR and 
Sanger sequencing with HCC tissues and adjacent nor-
mal tissues (ADJ) (tissue technical validation), and the 
top genes were chosen based on their differential meth-
ylation levels and haplotypes. Furthermore, the diagnos-
tic performance of individual genes was assessed through 
biological validation using two quadruplex MS‒qPCR 
assays in plasma from HCC patients, subjects with liver 
cirrhosis or benign liver diseases, and healthy individu-
als (Phase 1 plasma cohort), with the two genes exhibit-
ing the best discriminative performance selected for the 
construction of the final assay. The diagnostic perfor-
mance of this assay was subsequently validated using 
plasma obtained from HCC patients and subjects with 
liver cirrhosis (Phase 2 plasma cohort). Its diagnostic 
performance was then compared with that of existing 
blood biomarkers, including AFP, AFP-L3, DCP, and 
the GALAD score, across both the Phase 1 and Phase 2 
plasma cohorts (see the Additional file 2 for details).

Data analysis
Methylation profiling via targeted methylation sequencing
The FASTQ files were processed via the Cutadapt pack-
age (https://​github.​com/​marce​lm/​cutad​apt/) to obtain 
clean data by finding and removing adapter sequences 
and poly-tailed low-quality sequences and discard-
ing reads shorter than 50 bp. Clean bisulfite reads were 
aligned to the hg19 human reference genome from 
the 1000 Genomes Phase 3 resources with decoy and 
patch sequences using BSMAP software (https://​code.​
google.​com/​archi​ve/p/​bsmap/). The mapped reads were 

split into top/bottom strands using bamtools software 
(https://​github.​com/​pezma​ster31/​bamto​ols) according 
to the ZS tag in the BAM file generated by the BSMAP 
aligner, which indicated the top/bottom strands and the 
forward/reverse read status. Duplicates were removed 
separately by MarkDuplicates (Picard) (https://​github.​
com/​broad​insti​tute/​picard), and the split files were 
rejoined and sorted by coordinates. ClipOverlap (bamU-
til) (https://​github.​com/​statg​en/​bamUt​il) was used to 
prevent the converted/unconverted C bases in the over-
lapping regions from being double-counted. The per-
centage of methylated C bases was determined using 
the methratio.py script provided by BSMAP. BisMark 
(https://​github.​com/​Felix​Krueg​er/​Bisma​rk) was used to 
determine read-level cytosine methylation states (also 
known as the methylation haplotype).

Identification of informative CpG markers for HCC
HCC-specific informative CpG markers were identified 
using the following criteria: CpGs with more than 70% 
missing values in tissue or plasma samples were excluded 
during the tissue discovery and plasma validation phase. 
CpG retention with a P value < 0.01 (two-sided Wilcoxon 
rank-sum test) was used to compare HCC tissues and 
adjacent normal tissues (ADJ). CpGs with a P value < 0.05 
(two-sided Wilcoxon rank-sum test) between plasma 
samples of patients with HCC and patients with liver cir-
rhosis and between plasma samples of patients with HCC 
and healthy controls were preserved. To identify differ-
entially methylated CpGs, the methylation difference for 
each CpG was calculated as the mean methylation value 
of the HCC samples minus the mean methylation value 
of the control samples. CpGs with methylation differ-
ences ≥ 0.3, ≥ 0.2 and ≥ 0.1 in HCC tissues vs. ADJ tis-
sues, HCC plasma vs. healthy subject plasma, and HCC 
plasma vs. liver cirrhosis plasma were filtered to retain 
CpGs with an FDR < 0.05 (Student’s two-sided t test and 
the Benjamini–Hochberg false discovery rate for P value 
correction). CpGs with median methylation levels ≥ 40% 
in HCC tissues and ≥ 20% in HCC plasma were retained. 
The removal of genes with stable expression levels, 

Fig. 1  Flow diagram to discovery and validation of a novel dual-targets blood test for detection of hepatocellular carcinoma across stages 
from cirrhosis patients. In tissue discovery cohort, we utilized a human methylome bisulfite panel which targets 123 Mb of genomic content 
to identify DNA methylation-based biomarkers starting with 43 primary HCC tissue and 32 adjacent normal tissue samples. 21 candidate markers 
were validated in 55 HCC, 55 cirrhosis and 50 healthy plasma samples by bisulfite sequencing in plasma discovery cohort. Technically validated 
methylated candidates were then biologically validated on 50 primary HCC tissue and 50 adjacent normal tissue samples (including tissue samples 
for tissue discovery) using methylation-specific quantitative PCR (MS-qPCR), yielding six candidate DNA markers for further validation. In phase 1 
plasma cohort, candidate markers were validated in 53 HCC, 52 cirrhosis, 20 benign liver diseases and 50 healthy plasma samples. Two methylation 
genes, OSR2 and TSPYL5, and a novel internal reference gene (SDF4) were identified, and an MS-qPCR assay named Qliver was constructed. An HCC 
detection model was trained using the relative methylation levels of OSR2 and TSPYL5. Finally, Qliver model was further validated in 67 HCC and 81 
cirrhosis plasma samples in phase 2 plasma cohort

(See figure on next page.)
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Fig. 1  (See legend on previous page.)
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defined as a fold change between 0.95 and 1.05 between 
HCC patients and normal controls, was performed. This 
evaluation was based on RNA-Seq data obtained from 
the UCSC Xena Hub (https://​gdc.​xenah​ubs.​net). More-
over, for dimensionality reduction and the selection of 
highly associated methylation features associated with 
hepatocellular carcinoma, the Boruta package (https://​
github.​com/​scikit-​learn-​contr​ib/​boruta_​py) was utilized 
for feature selection to improve the performance of the 
model and resistant to overfitting and noise in the data.

Identification of the methylated haplotype in HCC
In the aggregation step, neighboring informative CpGs 
with a predefined window size range (80–300  bp) were 
merged into candidate methylation haplotypes using 
a sliding window-based segmentation method. Three 
or more informative CpGs in each haplotype were 
required. Additionally, each identified haplotype had to 
be observed in sequencing reads from no fewer than 20 
primary HCC tissues and 20 HCC plasma samples. The 
genes containing candidate methylation haplotypes were 
filtered using the TCGA 450 K dataset and TCGA RNA-
Seq data. The genes with significantly higher methylation 
levels in HCC patients than in non-HCC individuals in 
the 450  K dataset but lower RNA expression levels in 
RNA-Seq data were retained because dysregulated DNA 
methylation can lead to the silencing of tumor suppressor 
genes or the expression of oncogenes, thus contributing 
to the development of cancer.

Identification of a novel reference gene for MS‒qPCR
Genes containing CpGs showing stable methylation lev-
els were identified via the following criterion: exclusion of 
CpGs with more than 80% missing values in tissue sam-
ples. CpG methylation differences ≤ 0.2 were detected 
between HCC tissues and adjacent tissues, between 
HCC plasma samples and healthy plasma samples, and 
between HCC plasma samples and cirrhosis plasma sam-
ples. CpGs with median methylation levels ≥ 60% in HCC 
tissues and ≥ 50% in HCC plasma samples were retained. 
CpGs with a tau (τ) index ≥ 0.05 were removed from the 
analysis.

The tau (τ) index, which indicates whether a gene is 
tissue specific or ubiquitously methylated across tissues, 
produces a single specificity score for each gene or CpG 
site, indicating the ability to distinguish different cancer 
types from each other. The beta values of the DNA meth-
ylation 450 K array from the TCGA PanCan Atlas Cohort 
(9,639 samples across 32 tumor types) were downloaded 
and compiled by combining available data from all TCGA 
cohorts. The tau (τ) index was calculated as follows:

where xi is the beta value of the gene in cancer type i 
and n is the number of cancer types in the TCGA. τ var-
ies from 0 to 1, where 0 indicates consistent methyla-
tion levels across different tissues and 1 indicates tissue 
specificity.

Several steps were taken to refine the selection of can-
didate reference genes: the exclusion of genes contain-
ing CpG-SNP sites or with a low level of CpG density; 
the elimination of genes annotated as pseudogenes; and 
the removal of DEGs with expression fold changes > 1.05 
or < 0.95 between patients with HCC and normal controls 
was performed. This evaluation was based on RNA-Seq 
data obtained from the UCSC Xena Hub (https://​gdc.​
xenah​ubs.​net).

Statistical analysis
Candidate biomarker genes were selected based on the 
area under the receiver operating characteristic (ROC) 
curve (AUC) estimated using the R package pROC (ver-
sion 1.18.0). The 95% confidence intervals (CIs) were 
calculated using 2000 stratified bootstrap replicates. A 
generalized linear model (GLM) was generated to ana-
lyze the correlations between the DNA methylation lev-
els of selected genes based on the ΔCt values determined 
via MS‒qPCR using the GLM function of R (4.1.1). All 
participants in phase 2 plasma cohort were random split 
into training and validate set with enough number of 
repeats (t = 10) and a reasonable balance between train-
ing and validate set (30% for training, 70% for validate). 
Comparing the difference (ΔAUC​) between the training 
and validation cohorts allows us to assess whether the 
difference is statistically significant, thereby evaluating 
the risk of overfitting.

Sample size calculation
According to the literature and previous related studies, 
the expected sensitivity of the Qliver assay is 90% when 
the specificity is 90%. At a tolerance of 0.05 (α = 0.05), at 
least 138 patients with HCC and 138 non-HCC partici-
pants were included in the pooled plasma cohort (Phase 
1 plus Phase 2) according to the sample size (n) calcula-
tion formula for diagnostic performance validation as fol-
lows [16]:

where P is the predetermined value of the sensitiv-
ity (or specificity) that was ascertained from previously 
published data or clinician experience and for α = 0.05 

τ =

∑n
i=1

1− x̂i

n− 1
; x̂i =

xi

max
1≤i≤n

(xi)

n =
Z1−α/2

2
× P × (1− P)

�2

https://gdc.xenahubs.net
https://github.com/scikit-learn-contrib/boruta_py
https://github.com/scikit-learn-contrib/boruta_py
https://gdc.xenahubs.net
https://gdc.xenahubs.net
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(meaning a 95% confidence level), and Z1-α/2 is the stand-
ard normal variate (1.96 at 5% error). Δ is the maximum 
marginal error of the estimate.

Performance calculation for an intended‑use 10 K 
real‑world population
The positive predictive value (PPV) of the Qliver assay 
and GALAD score (defined as the proportion of patients 
with HCC among participants with positive test results) 
were computed via Bayes’ theorem as follows:

Similarly, the negative predictive value (NPV) of the 
Qliver assay and GALAD score (defined as the propor-
tion of non-HCC subjects among participants with nega-
tive test results) were computed via Bayes’ Theorem as 
follows:

Similarly, positive predictive agreement (PPA) and 
negative predictive agreement (NPA) were computed as 
follows:

The benefit of using Qliver model to the intended-use 
population was evaluated as follows:

PPV =
sensitivity× prevalence

sensitivity× prevalence + (1− specificity)× (1− prevalence)

NPV =
specificity× (1− prevalence)

(1− sensitivity)× prevalence + specificity× (1− prevalence)

PPA =
sensitivity× prevalence

sensitivity× prevalence + (1− specificity)× (1− prevalence)+ (1− sensitivity)× prevalence

NPA =
specificity× (1− prevalence)

(1− sensitivity)× prevalence + specificity× (1− prevalence)+ (1− specificity)× (1− prevalence)

In particular, the incidence of HCC in the cirrhosis 
population is 2.1% per year according to R Fan et al. [17], 
which is an intended-use population.

Results
Identification of methylated genes and a novel internal 
reference gene for hepatocellular carcinoma detection
Through the analysis of methylation differences at indi-

vidual CpG sites in tissue and plasma samples, feature 
selection using machine learning, methylated haplotype 
identification and filtering through the TCGA database, 
we identified 21 candidate genes that exhibit highly meth-
ylation and linkage in hepatocellular carcinoma, includ-

ing C1QL4, CR1L, CYP26C1, FOXG1, GHSR, HIST1H1D, 
IRX5, KCNG3, LHX2, MEX3A, NEFM, OSR2, OTX1, 
OXTR, PCDHGB6, PCDHGB7, PITX1, PRLHR, PRRX1, 

TSPYL5, and ZIC4. The heatmap visually demonstrated 
that the methylation levels of these 21 genes were higher 
in HCC tissues than in adjacent normal tissues (Fig. 2A). 

sensitivity

1− specificity
≥

1− prevalence

prevalence
·
harm

benefit

(See figure on next page.)
Fig. 2  Identification of methylated markers for hepatocellular carcinoma. A Unclustered heatmap of the 21 most differentially methylated markers 
between 43 primary HCC and 32 adjacent normal tissue samples (p-value were computed with Wilcoxon rank sum test.). B The distribution 
of methylation differential levels of 21 candidate markers in 55 HCC, 55 cirrhosis and 50 healthy plasma samples (p-value were computed 
with Wilcoxon rank sum test.). Plasma_Ctrl: cirrhosis and healthy plasma samples. Plasma_HCC: HCC plasma samples (C) The distribution of ΔCT 
value differences of 20 candidate markers (OTX1 was excluded from the analysis due to nonspecific PCR amplification and primer-dimers) in 50 
primary HCC and 50 adjacent normal tissue samples (including tissues for tissue discovery). HCC: hepatocellular carcinoma. ADJ: adjacent normal 
tissue. D ROC curves and associated AUC values with 95% confidential interval for six candidate DNA markers in 53 HCC, 52 cirrhosis, 20 benign 
liver disease and 50 healthy plasma samples. E Heatmap of methylation levels of CpGs in OSR2 gene for discriminating Primary HCC tumor (n = 377), 
Recurrent HCC tumor (n = 2) and Solid Tissue Normal (n = 50) in the GDC TCGA Liver Cancer (LIHC) 450 K dataset. F Heatmap of methylation levels 
of CpGs in TSPYL5 gene for discriminating Primary HCC tumor (n = 377), Recurrent HCC tumor (n = 2) and Solid Tissue Normal (n = 50) in the GDC 
TCGA Liver Cancer (LIHC) 450 K dataset. G The distribution of RNA expression values of OSR2 and TSPYL5 gene in Primary HCC tumor (n = 377), 
Recurrent HCC tumor (n = 2) and Solid Tissue Normal (n = 59) in the GDC TCGA Liver Cancer (LIHC) gene expression RNAseq dataset
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Fig. 2  (See legend on previous page.)
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Detailed information on the methylation blocks of the 
21 candidate genes is summarized in Additional file  1: 
Table S2.

Among the 21 candidate genes, six genes, namely, 
KCNG3 (p = 4.4e-11), OSR2 (p = 5.9e-09), IRX5 (p = 8.8e-
08), PITX1 (p = 2.3e-08), OTX1 (p = 4.7e-08), and 
TSPYL5 (p = 1.1e-08), presented the most significant dif-
ferences in methylation levels in plasma samples from 
HCC patients, subjects with liver cirrhosis and healthy 
individuals (Fig. 2B). Moreover, the methylation profiles 
of 43 primary HCC tissues and 32 adjacent normal tis-
sues revealed that these six genes exhibited HCC-specific 
methylation haplotypes (Additional file 3: Fig. S1). These 
results suggest that these 21 genes have great potential in 
HCC detection, especially these 6 genes.

Several steps were undertaken to refine the selection of 
candidate reference genes, as mentioned in the Methods 
section. Ultimately, UBE2K, SDF4, PIGG and KIAA0562 
were selected as candidate reference genes. Homo sapi-
ens stromal cell-derived factor 4 (SDF4), which encodes a 
stromal cell-derived factor that is a member of the CREC 
protein family, was ultimately identified in an independ-
ent pilot experiment as the most stably conserved refer-
ence gene in the tissue and plasma of patients with HCC 
and control subjects. SDF4 gene was hypermethylated in 
both HCC tissues and adjacent normal tissues and that 
the methylation levels of its hypermethylated chromo-
somal regions were not significantly different between 
HCC tissues and adjacent normal tissues (Additional 
file  3: Fig. S2). We also observed from the GDC TCGA 
Liver Cancer (LIHC) 450 K database that most CpG sites 
in the SDF4 gene are hypermethylated in HCC primary 
tumor tissues, normal solid tissues, and recurrent HCC 
tissues (Additional file  3: Fig. S3A). According to the 
GDC PanCancer (PANCAN) 450  K dataset, the meth-
ylation levels of most CpG sites in the SDF4 gene did not 
differ significantly between different cancer types (Addi-
tional file 3: Fig. S3G). The results of capture sequencing 

and public database analysis revealed that SDF4 could be 
used as an internal reference gene for MS-qPCR because 
of its stable high methylation level.

Technical validation of methylated genes and internal 
reference gene
The 21 candidate genes were technically validated in 50 
HCC tissues and 50 adjacent normal tissues via MS‒
qPCR to screen out several more reliable genes. OTX1 
was excluded from the MS‒qPCR validation because 
of nonspecific amplification and a high proportion of 
primer dimers. The differences in the methylation of 
OSR2 (p = 5.2e-11), C1QL4 (p = 2.2e-11), PITX1 (p = 1.4e-
10), KCNG3 (p = 1.2e-10), IRX5 (p = 5.4e-09), TSPYL5 
(p = 8.2e-08), ZIC4 (p = 3.4e-08) and FOXG1 (p = 1.8e-08) 
were more significant than those of the other 12 genes 
(Fig.  2C). Sanger sequencing was performed on tissue 
samples to confirm the methylation linkage status of 
the candidate genes. The methylation levels of the CpG 
sites of the OSR2 and TSPYL5 genes in HCC tissues were 
significantly greater than those in adjacent normal tis-
sues, and most of these CpGs were comethylated (Addi-
tional file  3: Fig. S4). On the basis of the p values from 
low to high, we selected the top six genes, namely, OSR2, 
C1QL4, PITX1, KCNG3, IRX5 and TSPYL5, for biological 
validation in independent plasma samples by two quad-
ruplex MS-qPCR.

In addition, the potential of the SDF4 gene as an inter-
nal reference was further verified using genomic DNA 
from leukocytes and tissues, as well as plasma cfDNA, 
in comparison with the commonly used internal refer-
ence gene ACTB. The Ct values of MS-qPCR for SDF4 
and ACTB were moderately correlated with the input 
amount of leukocyte genomic DNA (Additional file  3: 
Fig. S3E, F). There was no significant difference in the 
Ct values of SDF4 between 38 primary HCC tissues and 
38 adjacent normal tissues (Additional file  3: Fig. S3C) 
or between 12 breast cancer tissues and 20 lung cancer 

Fig. 3  Construction and validation the diagnostic performance of Qliver model to detect HCC in plasma cohort. A 2D kernel density estimation 
of ΔCT value of OSR2 and TSPYL5 gene in combined plasma cohort (phase 1 plus phase 2), which consists with 120 HCC, 133 cirrhosis, 20 benign 
liver disease and 50 healthy plasma samples. B ROC curves and associated AUC values for OSR2, TSPYL5, AFP, AFP-L3, DCP, GALAD and Qliver 
in phase 1 plasma cohort consisting of 53 HCC, 52 cirrhosis, 20 benign liver disease and 50 healthy plasma samples. C ROC curves and associated 
AUC values for OSR2, TSPYL5, AFP, AFP-L3, DCP, GALAD and Qliver in phase 2 plasma cohort consisting of 67 HCC and 81 cirrhosis plasma 
samples. D The comparison of ΔCT values of OSR2 (D), TSPYL5 (E), Qliver score (F) and GALAD score (G) in different sample groups in combined 
plasma cohort (phase 1 plus phase 2), consisting of 120 HCC, 133 cirrhosis, 20 benign liver disease and 50 healthy plasma samples (p-value 
were computed with Wilcoxon rank sum test). *, p < 0.05; **, p < 0.01; ***, p < 0.001; ****, p < 0.0001; p > 0.05 was considered not significant (ns). 
Healthy, healthy volunteers; HCA, Hepatocellular adenoma; FNH, Focal Nodular Hyperplasia; HH, Hepatic hemangioma; Cir, liver cirrhosis; HCC, 
hepatocellular carcinoma. H Comparison of HCC prediction results between Qliver and other classifiers in combined plasma cohort (phase 1 
plus phase 2) consisting of 120 HCC, 133 cirrhosis, 20 benign liver diseases and 50 healthy plasma samples. A Z-score normalization is performed 
on the normalized value across samples for each marker. Heatmaps and dendrograms were also created to depict the Qliver characteristics based 
on the Euclidean distance and ward. D2 clustering methods. Since OSR2 and TSPYL5 are highly methylated in HCC patients, the Δct value of their 
MS-qPCR amplification is lower than that of the control subjects

(See figure on next page.)
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Fig. 3  (See legend on previous page.)
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FFPE tissues (Additional file  3: Fig. S3D), and the same 
was true for ACTB. However, SDF4 was amplified more 
efficiently than ACTB. Importantly, when SDF4 was used 
as an internal reference gene, the hypermethylated gene 
ZIC4 performed better in distinguishing HCC patients, 
cirrhosis patients, and healthy controls then when ACTB 
was used as an internal reference gene in 2  mL plasma 
samples (AUC 0.826, 95% CI: 0.664–0.988 vs. AUC 0.786, 
95% CI: 0.608–0.964) (Additional file 3: Fig. S3B).

Establishment of Qliver score in 2 mL plasma cohort
The six candidate genes were validated by two quad-
ruplex MS–qPCR using SDF4 as an internal reference 
gene in an independent set of plasma samples (Phase 1 
plasma cohort), which included 53 HCC patients, 52 cir-
rhosis patients, 20 individuals with benign liver diseases 
and 50 healthy volunteers. Subsequently, the six candi-
date genes were combined in pairs, and their diagnostic 
performance for HCC detection was evaluated. The com-
bination of OSR2 and TSPYL5 exhibited the highest diag-
nostic performance (AUC = 0.955, 95% CI: 0.924–0.987) 
(Additional file  1: Table  S3), outperforming either gene 
individually (OSR2: AUC = 0.927, 95% CI: 0.884–0.971; 
TSPYL5: AUC = 0.927, 95% CI: 0.879–0.975), highlight-
ing their potential as optimal methylation markers for 
HCC detection (Fig. 2D).

Subsequently, an MS‒qPCR assay named Qliver, which 
includes OSR2, TSPYL5 and SDF4, was developed for 
HCC detection. The Qliver score, which represents the 
probability of a subject having HCC, was calculated 
according to the following formula generated by the 
GLM:

where e is Euler’s number, a mathematical constant 
approximately equal to 2.71828;

ΔOSR2 refers to the ΔCt value of OSR2, which is 
obtained by subtracting the Ct value of SDF4 from the Ct 
value of OSR2;

ΔTSPYL5 refers to the ΔCt value of TSPYL5, which is 
obtained by subtracting the Ct value of SDF4 from the Ct 
value of TSPYL5.

The △Ct values of OSR2 and TSPYL5 in the Phase 1 
plasma cohort were trained to construct a model (Qliver 
model) for predicting HCC using the generalized linear 
model (GLM), and the performance of Qliver was com-
pared with that of protein biomarkers, such as AFP, AFP-
L3, DCP and the GALAD score. The coefficients and 
intercept of the GLM of the Qliver model are shown in 
Additional file 1: Table S4. The AUC of Qliver for distin-
guishing HCC patients from non-HCC patients was 0.955 
(95% CI: 0.924–0.987), which was significantly greater 

Qliverscore = 1−
1

1+ e11.608−0.882∗�OSR2−0.835∗�TSPYL5

than that of AFP (0.751, 95% CI: 0.665–0.838), AFP-L3 
(0.685, 95% CI: 0.597–0.773), DCP (0.728, 95% CI: 0.622–
0.834), and the GALAD score (0.837, 95% CI: 0.764–
0.911; P value = 0.003, DeLong’s test). Even the AUCs of 
the single genes OSR2 (0.927, 95% CI: 0.884–0.971) and 
TSPYL5 (0.927, 95% CI: 0.879–0.975) were greater than 
those of the GALAD score when multiple protein mark-
ers were combined (Fig. 3B). When the specificity was set 
at almost the same level (85.25%–89.34%), the sensitivity 
of Qliver for distinguishing HCC patients from non-HCC 
patients was 88.68% (95% CI: 76.97%–95.73%), which was 
better than that of AFP (47.17, 95% CI: 33.30%–61.36%), 
AFP-L3 (41.51%, 95% CI: 28.14%–55.87%), DCP (62.26%, 
95% CI: 47.89%–75.21%) and the GALAD score (58.49%, 
95% CI: 44.13%–71.86%) (Table 1). The PPV of Qliver for 
detecting HCC in non-HCC patients was 78.33% (95% 
CI: 68.19%−85.91%), which was significantly greater than 
that of AFP (65.79%, 95% CI: 51.66%–77.58%), AFP-L3 
(57.89%, 95% CI: 44.05%–70.60%), DCP (64.71%, 95% CI: 
53.27%–74.68%) and the GALAD score (70.45%, 95% CI: 
57.62%–80.70%). The NPV of Qliver for detecting HCC in 
non-HCC patients was 94.78% (95% CI: 89.51%–97.48%), 
which was significantly greater than that of AFP (79.56%, 
95% CI: 74.98%–83.49%), AFP-L3 (77.37%, 95% CI: 
72.96%–81.25%), DCP (83.87%, 95% CI: 78.50%–88.10%) 
and the GALAD score (83.21%, 95% CI: 78.16%–87.28%) 
(Table 1).

With a specificity of 90%, Qliver was more sensitive 
than AFP, AFP-L3, DCP and the GALAD score in detect-
ing all stages (BCLC stage) of HCC. In particular, the sen-
sitivity of Qliver in detecting stage 0 + A HCC was 62.50% 
(95% CI: 24.49%–91.48%), which was significantly greater 
than that of AFP (37.50%, 95% CI: 8.52%–75.51%), AFP-
L3 (50.00%, 95% CI: 15.70%–84.30%), DCP (25.00%, 
95% CI: 3.19%–65.09%) and the GALAD score (25.00%, 
3.19%–65.09%) (Table 2). Moreover, Qliver was more spe-
cific than these protein biomarkers in detecting hepatic 
adenomas and hemangiomas (Additional file 1: Table S5). 
A more detailed comparison of Qliver with the protein 
biomarkers is shown in Additional file 1: Table S5.

Stable performance of Qliver score in independent 1 mL 
plasma cohort
The Qliver model was further validated in an additional 
independent cohort of plasma samples (Phase 2 plasma 
cohort), with the volume of each plasma sample reduced 
from 2 to 1  mL. The AUC of Qliver (0.958, 95% CI: 
0.927–0.989) in distinguishing 67 HCC patients from 81 
patients with liver cirrhosis was significantly greater than 
that of AFP (0.749, 95% CI: 0.667–0.832), AFP-L3 (0.702, 
95% CI: 0.618–0.785), DCP (0.790, 95% CI: 0.704–0.877), 
and the GALAD score (0.827, 95% CI: 0.753–0.901; P 
value = 0.001, DeLong’s test). Even the AUCs of the single 
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genes OSR2 (0.938, 95% CI: 0.898–0.978) and TSPYL5 
(0.911, 95% CI: 0.860–0.962) were greater than those of 
the GALAD score (Fig.  3C). When the specificity was 
set at 90.12–92.59%, the sensitivity of Qliver (88.06%, 
95% CI: 77.82%–94.70%) for detecting HCC was greater 
than that of AFP (50.75%, 95% CI: 38.24%–63.18%) and 
the GALAD score (59.70%, 95% CI: 47.00%–71.51%). 
The sensitivity and specificity of Qliver were both greater 
than those of AFP-L3 (47.76%, 95% CI: 35.40%–60.33%; 
83.95%, 95% CI: 74.12%–91.17%) and DCP (68.66%, 95% 
CI: 56.16%–79.44%; 76.54%, 95% CI: 65.82%–85.25%) 
(Table 1). The PPV (90.77%, 95% CI: 81.92%–95.52%) and 
NPV (90.36%, 95% CI: 82.99%–94.74%) of Qliver were 
both greater than those of the GALAD score (85.11%, 
95% CI: 73.26%–92.26%; 73.27%, 95% CI: 67.02%–
78.71%) and other protein biomarkers (Table 1).

When the plasma volume was reduced to 1 mL, Qliver 
still performed better than the other biomarkers in 
detecting early-stage HCC. For stage 0 + A stage HCC 
patients, the sensitivity of Qliver was 72.73% (95% CI: 

39.03%–93.98%), whereas those of AFP, AFP-L3, DCP 
and the GALAD score were 9.09% (95% CI: 0.23%–
41.28%), 18.18% (95% CI: 2.28%–51.78%), 54.55% (95% 
CI: 23.38%–83.25%) and 18.18% (95% CI: 2.28%–51.78%), 
respectively. For stage B and C HCC, the sensitivity of 
Qliver was still greater than those of these protein mark-
ers (Table 2). A comparison of biomarker performance in 
the Phase 2 plasma cohort is detailed in Additional file 1: 
Table S5.

Qliver outperforms protein biomarkers in the combined 
cohort
The MS‒qPCR data of the OSR2 and TSPYL5 genes 
from the Phase 1 plasma cohort were combined with 
those from the Phase 2 plasma cohort to further evaluate 
the performance of Qliver in detecting HCC in a larger 
sample size. The △Ct values of OSR2 and TSPYL5 were 
clearly clustered into two large groups between the HCC 
patients (n = 120) and the non-HCC controls (n = 203) 
(Fig.  3A). In the combined plasma cohort, the △Ct 

Table 1  HCC detection metrics of Qliver,AFP,AFP-L3,DCP, and GALAD score

a HCC incidence is 2.1% per year in cirrhotic population according our previous study9, which is an intended-use population of Qliver

Cohort Model Sensitivity(%)
(95%CI)

Specificity(%)
(95%CI)

PPV(%)
(95%CI)

NPV(%)
(95%CI)

Phase 1 plasma cohort Qliver 88.68 (76.97–95.73)
[47/53]

89.34 (82.47–94.20)
[109/122]

78.33 (68.19–85.91)
[47/60]

94.78 (89.51–97.48)
[109/115]

AFP 47.17 (33.30–61.36)
[25/53]

89.34 (82.47–94.20)
[109/122]

65.79 (51.66–77.58)
[25/38]

79.56 (74.98–83.49)
[109/137]

AFPL3 41.51 (28.14–55.87)
[22/53]

86.89 (79.58–92.31)
[106/122]

57.89 (44.05–70.60)
[22/38]

77.37 (72.96–81.25)
[106/137]

DCP 62.26 (47.89–75.21)
[33/53]

85.25 (77.69–91.02)
[104/122]

64.71 (53.27–74.68)
[33/51]

83.87 (78.50–88.10)
[104/124]

GALAD 58.49 (44.13–71.86)
[31/53]

89.34 (82.47–94.20)
[109/122]

70.45 (57.62–80.70)
[31/44]

83.21 (78.16–87.28)
[109/131]

Phase 2 plasma cohort Qliver 88.06 (77.82–94.70)
[59/67]

92.59 (84.57–97.23)
[75/81]

90.77 (81.92–95.52)
[59/65]

90.36 (82.99–94.74)
[75/83]

AFP 50.75 (38.24–63.18)
[34/67]

90.12 (81.46–95.64)
[73/81]

80.95 (67.88–89.53)
[34/42]

68.87 (63.19–74.03)
[73/106]

AFPL3 47.76 (35.40–60.33)
[32/67]

83.95 (74.12–91.17)
[68/81]

71.11 (58.50–81.13)
[32/45]

66.02 (60.26–71.34)
[68/103]

DCP 68.66 (56.16–79.44)
[46/67]

76.54 (65.82–85.25)
[62/81]

70.77 (61.27–78.74)
[46/65]

74.70 (67.00–81.11)
[62/83]

GALAD 59.70 (47.00–71.51)
[40/67]

91.36 (83.00–96.45)
[74/81]

85.11 (73.26–92.26)
[40/47]

73.27 (67.02–78.71)
[74/101]

Intended-use 10 K populationa Qliver 88.10 (82.93–92.15)
[185/210]

92.59 (92.06–93.11)
[9065/9790]

20.33 (18.97–21.76)
[185/910]

99.72 (99.60–99.81)
[9065/9090]

AFP 50.95 (43.98–57.90)
[107/210]

90.12 (89.51–90.71)
[8823/9790]

9.96 (8.73–11.35)
[107/1074]

98.85 (98.68–98.99)
[8823/8926]

AFPL3 47.62 (40.70–54.60)
[100/210]

83.95 (83.21–84.68)
[8219/9790]

5.98 (5.20–6.88)
[100/1671]

98.68 (98.50–98.84)
[8219/8329]

DCP 68.57 (61.82–74.79)
[144/210]

76.54 (75.68–77.37)
[7493/9790]

5.90 (5.38–6.47)
[144/2441]

99.13 (98.94–99.28)
[7493/7559]

GALAD 59.52 (52.55–66.22)
[125/210]

91.36 (90.78–91.91)
[8944/9790]

12.87 (11.50–14.39)
[125/971]

99.06 (98.89–99.20)
[8944/9029]
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values of OSR2 and TSPYL5 in the HCC patients were 
significantly lower than those in the non-HCC patients 
(p < 0.05) (Fig. 3D, E). The Qliver score and the GALAD 
score of the HCC patients were both significantly greater 
than those of the healthy volunteers, patients with focal 
nodular hyperplasia (FNH), patients with hepatic heman-
gioma (HH) and cirrhosis patients (Cir) (p < 0.05), but 
Qliver performed better overall (Fig.  3F, G). There was 
a significant difference in the Qliver score, but not the 
GALAD score, between HCC patients and patients with 
hepatocellular adenoma (HCA) (Fig. 3F, G).

The sensitivity of Qliver in detecting HCC at BCLC 
stages 0 and A was 68.42% (95% CI: 43.45%–87.42%), 
which was superior to that of the GALAD score at 
21.05% (95% CI: 6.05%–45.57%) (Table 2). Similar results 
were observed in other BCLC stages.

The AUC of Qliver was greater than that of the 
GALAD score in distinguishing HCC patients from 
healthy volunteers, cirrhosis patients, and individuals 

with benign liver disease (0.958, 95% CI: 0.934–0.983 
vs. 0.849, 95% CI: 0.797–0.901; P < 0.001; 0.958, 95% CI: 
0.938–0.978 vs. 0.810, 95% CI: 0.761–0.858, P < 0.001; 
0.959, 95% CI: 0.930–0.988 vs. 0.777, 95% CI: 0.679–
0.874, P < 0.001; DeLong’s test) (Fig.  4A‒C). Similar 
results were observed for AFP, AFP-L3 and DCP. For 
single-gene comparisons, OSR2 performed better than 
TSPYL5.

The sensitivity and specificity of Qliver for detecting 
HCC were greater than those of AFP, AFP-L3, DCP and 
the GALAD score in patients with different liver cirrho-
sis histories, tumor sizes, tumor counts and tumor stages 
(Fig.  3H). The positive rate of Qliver in detecting HCC 
was higher than that of the GALAD score under differ-
ent AFP and DCP concentrations, BCLC stages, liver cir-
rhosis histories, maximum tumor sizes and tumor counts 
(Fig. 4D-I). A detailed performance comparison of Qliver 
with these biomarkers in the combined plasma cohort is 
shown in Additional file 1: Table S5.

Table 2  Sensitivity for the HCC detection of Qliver, AFP, AFP-L3, DCP, and GALAD score across BCLC stages

Cutoff defined at specificity 90% in phase 1 plasma cohort

Cohort Model BCLC Stage

0 + A B C

Phase 1 plasma cohort Qliver 62.50 (24.49–91.48)
[5/8]

85.71 (57.19–98.22)
[12/14]

96.77 (83.30–99.92)
[30/31]

AFP 37.50 (8.52–75.51)
[3/8]

28.57 (8.39–58.10)
[4/14]

58.06 (39.08–75.45)
[18/31]

AFPL3 50.00 (15.70–84.30)
[4/8]

28.57 (8.39–58.10)
[4/14]

45.16 (27.32–63.97)
[14/31]

DCP 25.00 (3.19–65.09)
[2/8]

71.43 (41.90–91.61)
[7/14]

67.74 (48.63–83.32)
[22/31]

GALAD 25.00 (3.19–65.09)
[2/8]

50.00 (23.04–76.96)
[7/14]

70.97 (51.96–85.78)
[22/31]

Phase 2 plasma cohort Qliver 72.73 (39.03–93.98)
[8/11]

95.45 (77.16–99.88)
[21/22]

88.24 (72.55–96.70)
[30/34]

AFP 9.09 (0.23–41.28)
[1/11]

54.55 (32.21–75.61)
[21/22]

61.76 (43.56–77.83)
[30/34]

AFPL3 18.18 (2.28–51.78)
[2/11]

54.55 (32.21–75.61)
[12/22]

52.94 (35.13–70.22)
[18/34]

DCP 54.55 (23.38–83.25)
[6/11]

68.18 (45.13–86.14)
[15/22]

73.53 (55.64–87.12)
[25/34]

GALAD 18.18 (2.28–51.78)
[2/11]

68.18 (45.13–86.14)
[15/22]

67.65 (49.47–82.61)
[23/34]

Combined plasma cohort Qliver 68.42 (43.45–87.42)
[13/19]

91.67 (77.53–98.25)
[33/36]

92.31 (82.95–97.46)
[60/65]

AFP 21.05 (6.05–45.57)
[4/19]

44.44 (27.94–61.90)
[16/36]

60.00 (47.10–71.96)
[39/65]

AFPL3 31.58 (12.58–56.55)
[6/19]

44.44 (27.94–61.90)
[16/36]

49.23 (36.60–61.93)
[32/65]

DCP 42.11 (20.25–66.50)
[8/19]

69.44 (51.89–83.65)
[25/36]

70.77 (58.17–81.40)
[46/65]

GALAD 21.05 (6.05–45.57)
[4/19]

61.11 (43.46–76.86)
[22/36]

69.23 (56.55–80.09)
[45/65]
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Evaluating the benefit of Qliver score for a 10 K 
intended‑use population
To evaluate the performance of Qliver in the real world, 
a population of 10,000 cirrhosis patients was simulated. 
When the annual incidence of HCC was 2.1%, the PPV 
and NPV of Qliver were 20.33% (95% CI: 18.97%–21.76%) 
and 99.72% (95% CI: 99.60%–99.81%), respectively, which 
were higher than those of the GALAD score (12.87%, 95% 
CI: 11.50%–14.39%; 99.06%, 95% CI: 98.99%–99.20%) 
(Table 1). In addition, the PPV of Qliver was significantly 
greater than those of AFP, AFP-L3 and DCP.

The benefit of using the Qliver model for the intended 
user population was evaluated. When the prevalence of 
HCC in the cirrhotic population was 2.1%, the sensitivity 
of Qliver for detecting HCC was 88.33%, and the specific-
ity was 90.64%, the harm/benefit ratio was ≤ 0.2024273, 
which means that in order to benefit one Qliver-positive 
case subject, 5 Qliver-positive control subjects should be 
tolerated to undergo unnecessary clinical measures such 
as ultrasound examination.

Potential applicatioin of Qliver score in HCC prognosis
The potential of Qliver in HCC prognosis was also 
explored in this study. By analyzing the GDC TCGA Liver 
Cancer (LIHC) 450  K dataset, we found that the meth-
ylation levels of some CpG sites in OSR2 and most CpG 
sites in TSPYL5 were greater in primary HCC tumors 
(n = 377) and recurrent tumors (n = 2) than in normal 
solid tissues (n = 59) (Fig. 2E, F). According to the GDC 
TCGA Liver Cancer (LIHC) gene expression RNA-seq 
dataset, the mRNA expression level of OSR2 in primary 
HCC tumors (n = 377) and recurrent HCC tumors (n = 2) 
was significantly greater than that in normal solid tissues 
(n = 59). However, the opposite results were observed for 
TSPYL5 (Fig. 2G).

The disease-free survival (DFS) of 365 HCC patients 
in the GDC TCGA Liver Cancer (LIHC) 450  K dataset 
was evaluated on the basis of the methylation levels of 
the OSR2 and TSPYL5 genes. Patients with higher OSR2 
methylation levels had significantly worse DFS than those 

with lower methylation levels, with a hazard ratio (HR) 
of 1.393 (95% CI: 1.028–1.888) (p = 0.029; log-rank test) 
(Fig. 4J). However, there was no significant difference in 
DFS between HCC patients with high and low TSPYL5 
methylation levels, with an HR of 1.317 (95% CI: 0.974–
1.781) (p = 0.072; log-rank test) (Fig.  4K). Nevertheless, 
the DFS of HCC patients with high dual-gene methyla-
tion levels was significantly lower than that of patients 
with low dual-gene methylation levels. Moreover, dou-
ble gene methylation was better than single gene meth-
ylation in predicting prognosis (p = 0.008; log-rank test, 
HR = 1.627, 95% CI: 1.127–2.350) (Fig.  4L). These find-
ings indicate that hypermethylated OSR2 and TSPYL5 
are promising markers for HCC prognosis.

Patients with higher methylation levels of OSR2 or 
TSPYL5 gene had a significantly lower DFS rate than 
those with low methylation levels across different age or 
AJCC stage. Moreover, combining the TSPYL5 and OSR2 
genes, the DFS rate of HCC patients with high methyla-
tion levels of both genes was significantly lower than that 
of patients with low methylation levels (Additional file 3: 
Fig. S5).

Potential application of Qliver score in multi‑cancer 
detection
The methylation levels of OSR2 and TSPYL5 were vali-
dated in multiple tumor cell lines and white blood cells 
(WBCs). The methylation levels of the OSR2 gene were 
significantly greater in most tumor cell lines than in 
leukocytes, especially in CAL-62 (thyroid), HCC-2279 
(lung), MKN74 (stomach), MKN28 (stomach), EFM-
19 (breast) and MCF7 (breast) cells (Additional file  3: 
Fig. S6). This finding suggests that the OSR2 gene may 
be an oncogene, so Qliver can be used for multicancer 
detection.

Discussion
Early detection is crucial for improving the 5-year sur-
vival rate of patients with various cancers, including liver 
cancer [18]. In this study, we identified two methylated 

(See figure on next page.)
Fig. 4  Comparison of the performance of Qliver and GALAD score in different subgroups and the possibility of using Qliver for HCC prognosis. 
A ROC curves and associated AUC values with 95% confidential interval for OSR2, TSPYL5, AFP, AFP-L3, DCP, GALAD and Qliver in combined 
plasma cohort (phase 1 plus phase 2) consisting of 120 HCC and 50 healthy plasma samples. B ROC curves and associated AUC values with 95% 
confidential interval for OSR2, TSPYL5, AFP, AFP-L3, DCP, GALAD and Qliver in combined plasma cohort consisting of 120 HCC and 50 cirrhosis plasma 
samples. C ROC curves and associated AUC values with 95% confidential interval for OSR2, TSPYL5, AFP, AFP-L3, DCP, GALAD and Qliver in combined 
plasma cohort, consisting of 120 HCC and 20 benign liver disease samples. D Comparison of positive and negative proportions of HCC detection 
by Qliver and GALAD score in HCC patients (n = 120) at different AFP concentrations. (< 20 μg/L, 20 μg/L ≤ AFP ≤ 400 μg/L, > 400 μg/L), E at different 
DCP concentrations (D < 40mAU/mL, and ≥ 40mAU/mL), F at BCLC 0/A/B/C stages, G at different cirrhosis history, H at different tumor size and (I) 
at different tumor count. Kaplan–Meier estimates of disease-free survival in HCC patients (n = 365) in the GDC TCGA Liver Cancer (LIHC) 450 K 
dataset, stratified by methylation level of OSR2 gene (J), TSPYL5 gene (K) and dual-target (L). The DFS outcomes between OSR2high /TSPYL5high 
and OSR2low /TSPYL5low groups were compared using the log-rank test
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Fig. 4  (See legend on previous page.)
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genes, OSR2 and TSPYL5, for HCC detection and devel-
oped an MS‒qPCR assay named Qliver. We compared 
the performance of Qliver for detecting HCC with that 
of existing surveillance methods with respect to cirrho-
sis history, tumor size, tumor count, and tumor stage. 
Qliver performed best in HCC detection, followed by the 
GALAD score. The performance of Qliver far exceeded 
that of AFP, AFP-L3 and DCP. In cirrhosis patients, sub-
jects with benign liver diseases and healthy individuals 
as controls, the pooled sensitivity of Qliver for detecting 
HCC using 2 mL of plasma was 88.68% (95% CI: 76.97–
95.73%), with a specificity of 89.34% (95% CI: 82.47–
94.20%), which was greater than the sensitivity of the 
GALAD score of 58.49% (95% CI: 44.13–71.86%) at the 
same specificity. When cirrhosis patients were used as 
controls, the pooled sensitivity of Qliver for HCC detec-
tion with 1 mL of plasma was still greater than that of the 
GALAD score, with almost the same specificity (88.06%, 
95% CI: 77.82%–94.70% vs. 59.70%, 95% CI: 47.00%–
71.51%). For early HCC detection in cirrhosis patients, 
the sensitivity of Qliver for detecting BCLC 0 and A HCC 
using 1 mL of plasma was significantly greater than that 
of the GALAD score (72.73%, 95% CI: 39.03%–93.98% vs. 
18.18%, 95% CI: 2.28%–51.78%). In previous studies, the 
GALAD score performed well for detecting any stage of 
HCC, with a pooled sensitivity, specificity, and AUC of 
0.82 (95% CI: 0.78–0.85), 0.89 (95% CI: 0.85–0.91), and 
0.92 (95% CI: 0.89–0.94), respectively [2]. The GALAD 
score for identifying BCLC 0/A HCC has a moderate sen-
sitivity of 0.73 (95% CI: 0.66–0.79) and a high specificity 
of 0.87 (95% CI: 0.81–0.91) [2]. The performance of the 
GALAD score in this study appeared to be suboptimal, 
possibly due to the unofficial configuration of the assay 
reagents and equipment for AFP, AFP-L3, and DCP com-
pared with that of Roche’s Elecsys GALAD assay and the 
use of plasma instead of serum. Another possible reason 
may be that most HCC patients in this study had chronic 
HBV infection, but the GALAD score has a higher sensi-
tivity in the HCC subgroups with HCV or nonviral liver 
diseases [2]. Therefore, compared with existing surveil-
lance methods, Qliver holds great promise for the early 
detection of HCC caused by HBV infection in the Chi-
nese population, and can supplement the deficiencies 
of US and AFP in early HCC detection. However, this 
potential of Qliver needs to be further fully validated in a 
larger population.

In this study, the performance of single methylated 
genes, OSR2 and TSPYL5, for HCC detection was better 
than that of single tumor proteins including AFP, AFP-
L3 and DCP. Even the performance of the GALAD score 
when these three proteins were integrated was lower than 
that of the two single methylated genes. The AUCs of 
OSR2 and TSPYL5 for distinguishing HCC patients from 

healthy individuals, cirrhosis patients and patients with 
benign liver diseases were greater than 0.94 and 0.90, 
respectively, while those of the GALAD score were less 
than 0.85. Gene methylation should be more suitable for 
the early detection of cancer than other biomarkers, such 
as tumor proteins, ctDNA mutations, copy number vari-
ations, and ctDNA fragmentomic features. Hypermethyl-
ation of tumor suppressor genes is likely to be the earliest 
event in carcinogenesis [10], and methylated CpG sites 
in gene promoter regions are clustered [13]. Therefore, 
DNA methylation has increased sensitivity for detecting 
early cancers. The average detection rates of early-stage 
HCC were only 56.38%, 58.84%, and 33.55%, respectively, 
using gene methylation, ctDNA mutation and genome-
wide cfDNA fragmentation profiles obtained via low-
coverage WGS [19]. Although the average detection rate 
of DNA methylation is not better than that of ctDNA 
mutations, the detection rate of single gene methylation 
in early-stage HCC can reach 100%, whereas that of sin-
gle gene mutations is only 59% [19]. Therefore, identify-
ing methylated genes with excellent performance is very 
important for early HCC detection.

A meta-analysis of 33 eligible articles from 4113 
patients suggested that RASSF1A methylation in ctDNA 
could be used as a potential biomarker for HCC screen-
ing, with a sensitivity of 0.644 (95% CI: 0.608–0.678) and 
a specificity of 0.875 (95% CI: 0.847–0.900) [20]. Oussalah 
et al. [21] reported that SEPT9 methylation exhibited high 
diagnostic accuracy for HCC, with an AUC of 0.944 (95% 
CI: 0.900–0.970), but the sensitivity was 87.88% (95% 
CI: 71.8%–96.6%) and the specificity was 67.54% (95% 
CI: 60.4%–74.1%) when ≥ 1 of the triplicate samples was 
positive. Owing to the heterogeneity of hepatocellular 
carcinoma, the diagnostic sensitivity of single gene meth-
ylation is low. Multitarget panels are expected to improve 
the sensitivity of HCC detection. Chalasani et  al. [22] 
developed a multitarget panel consisting of four methyl-
ated DNAs (HOXA1, EMX1, TSPYL5 and B3GALT6) and 
two protein markers (AFP and AFP-L3), which had a high 
sensitivity of 71% (95% CI: 60%–81%) at 90% specificity 
for early-stage HCC detection, which was higher than 
those of the GALAD score (41%, 95% CI: 30–53%) and 
AFP concentration ≥ 7.32 ng/mL (45%, 95% CI: 33–57%). 
Luo et al. [23] proposed an HCC screening model based 
on 2321 methylation markers, which achieved 84% sen-
sitivity and 96% specificity in an independent validation 
cohort with an AUC of 0.934 (95% CI: 0.905–0.963) for 
distinguishing early-stage HCC patients from high-risk 
individuals. Xu et al. [12] constructed a model combining 
10 CpG sites with a sensitivity of 85.7% and a specificity 
of 94.3% for detecting HCC in the training dataset and a 
sensitivity of 83.3% and a specificity of 90.5% in the vali-
dation dataset. In this study, only two methylation genes 
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using 1 mL of plasma were required to achieve an AUC of 
0.958 (95% CI: 0.927–0.989) to distinguish HCC patients 
from cirrhosis patients, with a sensitivity of 72.73% (95% 
CI: 39.03%–93.98%) and a specificity of 90% for detecting 
BCLC 0 and A stage HCC. Therefore, Qliver, with its low 
cost, convenient experimental procedures, and superior 
performance, is more effective for HCC screening com-
pared to targeted sequencing and WGS methods involv-
ing hundreds of genes.

The methylation levels of OSR2 and TSPYL5 were 
validated in a variety of tumor cell lines and white blood 
cells, and the methylation level of the OSR2 gene in 
most tumor cell lines was significantly greater than that 
in white blood cells, especially CAL-62 (thyroid), HCC-
2279 (lung), MKN74 (stomach), MKN28 (stomach), 
EFM-19 (breast) and MCF7 (breast) cells, suggesting 
that OSR2 may be a multiple-cancer biomarker. OSR2 is 
a mammalian homolog of the Drosophila odd-skipped 
family of transcription factors [24]. OSR2 methylation 
has been used to detect other cancers, such as gastric 
cancer [25] and oropharyngeal squamous cell carcino-
mas [26]. The methylation level of OSR2 in HCC primary 
tumors and recurrent tumors was greater than that in 
normal solid tissues, and its mRNA expression level was 
also significantly greater in HCC primary tumors and 
recurrent HCC tumors than in normal solid tissues, sug-
gesting that OSR2 may be an oncogene. OSR2 has been 
shown to play an important role in cell proliferation and 
development [27]. Wen et al. [28] provided evidence that 
OSR2 promotes prostate cancer tumorigenesis. Han et al. 
[29] knocked down OSR2 in human adenocarcinoma 
(H838) cells and found that cell proliferation was signifi-
cantly inhibited compared with the non-targeting siRNA 
group, suggesting that OSR2 may have an oncogenic role 
in lung cancer. TSPYL5, a member of the nucleosome 
assembly protein (NAP) superfamily, is likely a tumor 
suppressor gene in ovarian, lung, and colorectal cancers 
according to several studies [30, 31]. The higher methyla-
tion level but lower mRNA expression in HCC primary 
tumors and recurrent tumors than in normal solid tis-
sues also supports the role of TSPYL5 as a tumor sup-
pressor gene. The combination of OSR2 as an oncogene 
and TSPYL5 as a tumor suppressor gene has the poten-
tial to detect multiple cancers but requires rigorous and 
adequate validation.
Qliver’s potential for HCC prognosis was also 

explored in this study. By mining the GDC TCGA Liver 
Cancer (LIHC) 450  K dataset and the GDC TCGA 
Liver Cancer (LIHC) gene expression RNA-seq data-
set, hypermethylated OSR2 was negatively correlated 
with the disease-free survival (DFS) of HCC patients 
(p = 0.029), and when combined with hypermethylated 

TSPYL5, this correlation was further increased 
(p = 0.008). These findings suggest that Qliver has good 
potential for predicting HCC prognosis, but adequate 
validation in clinical samples is needed, especially in 
the Chinese population.

The ideal internal reference genes are stably expressed 
under any experimental conditions, but many stud-
ies have shown that genes stably expressed in different 
species or under different conditions will change [32]. 
Therefore, screening appropriate reference genes under 
specific conditions is highly important. Genes such as 
ACTB, B2M, GAPDH, 18S rRNA and 28S rRNA are 
commonly used as internal reference genes in qPCR. 
However, the stability of these classical reference genes 
has been questioned in recent years [33, 34]. We found 
that the MS‒qPCR amplification efficiency of ACTB 
was lower than that of highly methylated target genes 
during technical validation in tissues. This may be 
because the DNA sequence of ACTB is hypomethylated 
and the bisulfite-converted sequence is AT-rich, which 
is not conducive to PCR amplification. In this study, 
we identified for the first time a novel reference gene, 
SDF4, which has a stable high methylation level and 
high MS‒qPCR amplification efficiency compared with 
ACTB, which can improve the diagnostic performance 
of methylated target genes. We believe that these find-
ings will improve the analytical performance of bisulfite 
conversion-based MS‒qPCR for cancer detection and 
other applications.

In addition, deconvolution of ctDNA from highly 
heterogeneous and noisy backgrounds is essential for 
translating ctDNA methylation data into accurate and 
effective noninvasive cancer markers. This is espe-
cially true for early and/or less aggressive cancers [35]. 
Lehmann-Werman et  al. [36] demonstrated the supe-
rior sensitivity of multiple CpG haplotypes in detecting 
tissue-specific features in cfDNA. Guo et  al. [37] used 
methylated haplotypes for quantitative estimations of 
tumor load and tissue origin profiles in circulating cell-
free DNA from 59 patients with cancer, suggesting that 
plasma methylated haplotyping is an important tool for 
the early detection of tumors and their major growth 
sites and that it is a promising strategy for the early 
detection of tumors.

This study has several limitations. First, the sample 
sizes of the Phase 1 plasma cohort and Phase 2 plasma 
cohort were relatively small, and the inclusion of more 
patients with early-stage HCC (BCLC stage 0‒A) will 
improve the robustness of the Qliver model. Second, 
although our results were encouraging, they were 
based on a single-center retrospective case; a prospec-
tive multicenter study should be organized to indepen-
dently validate our findings.
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Conclusions
In this study, we identified two methylated genes, OSR2 
and TSPYL5, for HCC detection using a pipeline that 
included tissue discovery and plasma validation, tis-
sue technical validation and plasma biological valida-
tion. A novel reference gene, SDF4, was also identified 
that outperformed ACTB in improving the diagnostic 
performance of the bisulfite-converted MS‒qPCR assay 
of the target methylated genes for cancer detection. An 
MS‒qPCR assay named Qliver containing OSR2, TSPYL5 
and SDF4 was subsequently developed and validated for 
the detection of HCC in an independent plasma cohort. 
Qliver outperformed existing surveillance methods, 
such as AFP, AFP-L3, DCP and the GALAD score. The 
potential of Qliver in HCC prognosis was also explored 
in this study, and the analysis of the methylation and 
mRNA expression databases revealed that it has a strong 
ability to predict HCC prognosis; however, this find-
ing needs to be fully validated in clinical samples. OSR2 
is highly methylated in many cancer cell lines compared 
with leukocytes, suggesting that it may be a multicancer 
biomarker. Qliver, which combines a possible oncogene, 
OSR2, and a possible tumor suppressor gene, TSPYL5, 
may have great potential in detecting multiple cancers.
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in the representation signifies the methylation status of a single sample, 
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loci]. Fig. S3- [Fig. S3 Identification of a Novel Reference Gene for MS-
qPCR. (A) Heatmap of methylation levels of CpGs in SDF4 gene for dis-
criminating Primary HCC tumor (n = 377), Recurrent HCC tumor (n = 2) 
and Solid Tissue Normal (n = 50) in the GDC TCGA Liver Cancer (LIHC) 
450 K dataset. (B) ROC curves and associated AUC values with 95% 
confidential interval for ZIC4 as target gene which normalized by ACTB 
and SDF4 reference gene in archived plasma cohort, which consists 
with 22 HCC, 23 cirrhosis and 23 healthy plasma samples by MS-qPCR. 
The receiver operating characteristic curve analysis indicated that SDF4 
(AUC = 0.826) might be an optimal reference gene for normalization of 
MS-qPCR data in liver cancer, which show higher HCC detection rate 
than ACTB (AUC = 0.786) with p-value 0.06822 use DeLong’s test. (C) 
The distribution of ΔCT value of ACTB and SDF4 in archived FFPE sam-
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tissue samples. ADJ, adjacent normal tissue; HCC, hepatocellular carci-
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of SDF4 and ACTB in WBC DNA (n = 7, Spearman’s rank correlation 
rho). (F) Correlation between the CT value of SDF4 and ACTB with 
DNA input amount in WBC DNA (n = 7, Spearman’s rank correlation 
rho). (G) The distribution of methylation levels of CpGs in SDF4 gene 
for pancancer tissues in the GDC PanCancer (PANCAN) 450 K dataset.]. 
Fig. S4- [Fig. S4 Visualization of HCC-specific methylation haplotype 
of OSR2 and TSPYL5 determined by Sanger sequencing. Visualization 
of methylation haplotype determined by Sanger sequencing within 
OSR2 gene in 8 primary HCC and 9 adjacent normal tissue samples (A) 
and TSPYL5 (B) gene in 6 primary HCC and 6 adjacent normal tissue 
samples. These tissues were also used for tissue discovery and tissue 
technical validation. Allele-specific methylation status from the Sanger 
data clearly showed that methylated alleles in OSR2 and TSPYL5 gene 
were associated with HCC, highlighting that DNA methylation status 
in these regions might be a novel biomarker for HCC detection.]. Fig. 
S5- [Fig. S5 Methylated OSR2 and TSPYL5 as Prognostic Biomarkers. The 
DFS rate of HCC patients from the TCGA 450 K dataset was assessed 
based on the methylation levels of the OSR2(A) and TSPYL5(B) genes. 
Patients with higher methylation levels of OSR2 or TSPYL5 gene had 
a significantly lower DFS rate than those with low methylation levels 
across different age or AJCC stage. Moreover, combining the TSPYL5 
and OSR2 genes(C), the DFS rate of HCC patients with high methyla-
tion levels of both genes was significantly lower than that of patients 
with low methylation levels. The findings indicate that the presence of 
methylated OSR2 and TSPYL5 holds promise as prognostic indicators 
for individuals diagnosed with hepatocellular carcinoma]. Fig. S6- [Fig. 

https://doi.org/10.1186/s12916-025-04115-w
https://doi.org/10.1186/s12916-025-04115-w


Page 18 of 19Teng et al. BMC Medicine          (2025) 23:278 

S6 Methylation status of OSR2 and TSPYL5 gene in cancer cell lines and 
WBCs. For an initial assessment of the methylation status of the OSR2 and 
TSPYL5 genes, MS-qPCR was performed on cancer cell lines from uterine 
cancer, leukemia, thyroid cancer, liver cancer, stomach cancer, neuro-
blastoma, lung cancer, glioma, pancreatic cancer, esophageal squamous 
cell, colon cancer, ovarian cancer, submandibular, bladder cancer, breast 
cancer, lymphoma, prostate cancer, glioma, duodenal adenocarcinoma, 
melanoma, myeloma, teratoma and WBCs. Most of cancer cell lines were 
either completely or partially methylated in the region of OSR2 gene, 
highlighting that DNA methylation status in these regions might be a 
novel biomarker for multiple cancer or pan-cancer detection].
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