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Abstract 

Background Polycystic ovary syndrome (PCOS) is a common reproductive and metabolic disorder in the reproduc-
tive-age women. The international evidence-based guideline for the assessment and management of PCOS 2023 now 
suggests raising the follicle number per ovary (FNPO) threshold from 12 to 20 to define its key feature, polycystic ovar-
ian morphology (PCOM). However, understanding of low- and high-FNPO PCOS cases defined in this cutoff is very 
limited. Given that the measures of lipoprotein subfractions are the biomarkers of several common diseases, this 
study aims to explore clinical characteristics and lipoprotein subfractions in low- and high-FNPO PCOS, and develop 
a diagnostic model.

Methods A total of 1918 women including 792 low- and 182 high-FNPO PCOS cases, met the international evidence-
based guideline 2023, and 944 controls were collected for clinical data analysis. Plasma samples of 66 low-FNPO 
and 24 high-FNPO PCOS cases and 22 controls matched with BMI and age were utilized for the measurement of 112 
lipoprotein subfractions by nuclear magnetic resonance spectroscopy. Partial least squares discriminant analysis (PLS-
DA) and logistic regression analysis were used to identify key lipoprotein subfractions. Ten machine learning algo-
rithms and recursive feature elimination with logistic regression were used to construct the effective model to predict 
PCOM based on the new guideline. Models were validated with bootstrap resampling.

Results High-FNPO PCOS cases presented worse lipid parameters compared with low-FNPO cases and controls. 
Based on the results of PLS-DA and logistic regression analysis, seven key lipoprotein subfractions were selected, 
including V2TG, V3TG, V4TG, V2CH, V3CH, V3PL, and V4PL. The addition of them into the anti-Müllerian hormone (AMH) 
models for predicting high-FNPO PCOS resulted in a significantly improved model performance (AUC increased 
from 0.750 to 0.874). Even if the only V3TG was added into the AMH model, the AUC increased to 0.807.
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Conclusions Lipid metabolism, particularly seven key lipoprotein subfractions, has been identified as a major risk fac-
tor for high-FNPO PCOS cases. Among these, V3TG subfraction warrants special attention, both from the perspective 
of disease risk and precision diagnosis. Due to the lack of effective external validation at this stage, validation of larger 
sample sizes is necessary before generalizing the application.
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Background
Polycystic ovary syndrome (PCOS) is the most common 
reproductive and metabolic disease affecting reproduc-
tive aged women [1]. Clinical characteristics of PCOS 
included clinical and/or biochemical hyperandrogenism 
(HA), irregular menstruation (IM), polycystic ovarian 
morphology (PCOM), and metabolic disorders such as 
insulin resistance [2], type 2 diabetes [3], cardiovascular 
disease [4], and dyslipidemia [5].

In the Rotterdam diagnostic criteria, PCOM is iden-
tified by the presence of excessive follicle number per 
ovary (FNPO) ≥ 12 [6]. With the technological develop-
ment, the transvaginal transducers of ultrasound with 
a frequency ≥ 8 MHz are used in recent years, which 
could detect a higher number of FNPO [7]. Hence, the 
Rotterdam criteria for PCOM is not appropriate when 
high-resolution ultrasound is used and a more accurate 
threshold for distinguishing normal ovaries from PCOM 
is needed. In the international evidence-based guideline 
for the assessment and management of polycystic ovary 
syndrome 2023, the threshold of FNPO ≥ 20 was recom-
mended for PCOM diagnosis in adult women [8]. Besides 
that, the level of serum anti-Müllerian hormone (AMH) 
was recommended as a substitute way of ultrasound to 
diagnosis PCOM in adults. It has been reported that 
PCOS women who met the new guideline had a higher 
risk of metabolic syndrome [9]. A recent study investi-
gated the DNA methylation of PCOS women found that 
genes annotated to differentially methylated probes in 
high-FNPO PCOS cases (FNPO ≥ 20) were significantly 
enriched in regulation of triglycerides (TG) biosynthetic 
and metabolic process, suggesting that PCOM was 
closely related to dyslipidemia [10].

Dyslipidemia is a common metabolic complication 
of PCOS, presenting as higher level of serum TG and 
very low-density lipoprotein (VLDL), and lower level of 
serum high-density lipoprotein (HDL) [11]. Traditionally 
used lipid measurements in clinical applications could 
only detect the level of total TG, total cholesterol (CH), 
low-density lipoprotein cholesterol (LDL-C), and high-
density lipoprotein cholesterol (HDL-C), which usually 
ignored the subtle alteration of lipoprotein subfractions 
[12]. Nuclear magnetic resonance (NMR) spectroscopy 
is a non-destructive and highly reproducible tool, which 
could absolutely quantify the concentration of lipoprotein 

subfractions [13–15]. The detailed lipoprotein subfrac-
tions profile provides a comprehensive and systematic 
method to investigate several complex and heterogenous 
diseases, such as type 2 diabetes (T2DM), chronic kidney 
failure, and liver disease [16]. Adding lipoproteins could 
improve the discrimination of T2DM risk prediction 
model [17]. In PCOS women, obesity and HA both con-
tribute to the dyslipidemia and alteration of VLDL sub-
fractions, which has negatively effect on the long-term 
health of PCOS women [18]. Women with PCOS who 
have an atherogenic lipoprotein subfractions profile may 
be at increased cardiovascular risk throughout their life-
time [19]. However, the relationship between PCOM and 
lipoprotein subfractions profile is still unknown in PCOS.

In this study, we aimed to investigate the clinical char-
acteristic and different profile of plasma lipoprotein sub-
fractions using NMR spectroscopy between low- and 
high-FNPO PCOS cases. Moreover, the key lipoprotein 
subfractions together with AMH marker could increase 
the prediction ability of PCOM based on the new guide-
line, compared with the only AMH parameter.

Methods
Subjects
The study participants consisted of 974 PCOS cases 
recruited in the Center for Reproductive Medicine, Shan-
dong University, from 2014 to 2017. The diagnosis of 
PCOS was defined according to the Rotterdam Consen-
sus proposed in 2003. IM was determined by a menstrual 
cycle more than 35 days in length or a history of ≤ 8 
menstrual cycles in a year. HA was confirmed if there 
was evidence of hyperandrogenemia and/or hirsutism. 
PCOM was determined by 12 or more follicles measur-
ing 2–9 mm using the transvaginal ultrasonography. 
Based on the international evidence-based guideline for 
the assessment and management of polycystic ovary syn-
drome 2023, women with age of < 20 years or > 40 years 
were excluded. Patients with other etiologies for HA 
and ovulatory dysfunction were also excluded, e.g., con-
genital adrenal hyperplasia, 21-hydroxylase deficiency, 
androgen-secreting tumors, Cushing’s syndrome, thyroid 
disease, and hyperprolactinemia. For the measurement 
of lipoprotein subfractions, the plasma of 90 PCOS cases 
and 22 controls matched with age and BMI were newly 
collected. PCOS cases were divided into low-FNPO 
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(12 ≤ FNPO < 20) and high-FNPO (FNPO ≥ 20) PCOS 
cases according to the recommended threshold of 20 
FNPOs in the new international guideline.

A total of 944 control women who were referred for 
routine physical examination or tubal factor infertility 
were enrolled. All controls had regular menstrual cycles 
(21–35 days), normal steroid hormone levels, and normal 
ovarian morphology (FNPO < 12).

In our study, transvaginal ultrasonography examina-
tions were carried out with wide band frequency (5–9 
MHz) transducers with automatic optimization, and 
the center frequency was 8 MHz (E8, GE Healthcare, 
Milwaukee, WI, USA). A two-dimensional evaluation 
was performed during the period of oligomenorrhea or 
amenorrhea, the early follicular phase of the menstrual 
cycle or a period of prolonged vaginal bleeding. Real-
time counts of all visible follicles were performed by 
gynecologists, and image scans were stored in an elec-
tronic recording system (INFINITT PACS, Phillipsburg, 
NJ, USA). The ovary was visualized in plane, which gave 
the best image quality, and antral follicles measuring 2–9 
mm were counted by scanning each ovary from the inner 
to the outer margin to obtain the number of all countable 
follicles.

All experimental protocols performed in studies involv-
ing human participants were in accordance with the 
ethical standards of the Ethics Committee of Shandong 
University and with the 1964 Helsinki Declaration and its 
later amendments or comparable ethical standards. Writ-
ten informed consent was obtained from each patient. All 
experimental protocols were performed in accordance 
with relevant guidelines and regulations approved by the 
Institutional Review Board of  Center for Reproductive 
Medicine, Shandong University (IRB2021-98).

Clinical characteristic data collection
The clinical and biochemical data of 974 PCOS and 944 
control women was collected from the medical record 
system, which includes (i) anthropometric parameters 
such as age, height, body weight, and menstrual cycle; (ii) 
endocrine parameters (between the 2nd and 5th day of 
the menstrual cycle) including follicle stimulating hor-
mone (FSH), luteinizing hormone (LH), estrogen  (E2), 
progesterone (P), prolactin (PRL), total testosterone (T), 
thyroid stimulating hormone (TSH), AMH, and dehy-
droepiandrosterone sulfate (DHEAS); and (iii) metabolic 
parameters, including glucose, insulin, TG, CH, LDL-C, 
and HDL-C.

The body mass index (BMI) was calculated using the 
following formula: weight (kg)/height (m)2. The homeo-
stasis model for insulin resistance (HOMA-IR) was 

calculated by fasting plasma glucose (mmol/L) × fasting 
insulin (mIU/L)/22.5 [20].

Sample preparation
Fasting blood samples were collected from 90 PCOS 
cases and 22 controls matched with age and BMI follow-
ing standard in-hospital procedures. The blood sample 
was centrifuged at 1500 rpm for 15 min at room tem-
perature. The plasma was then aliquoted into microfuge 
tubes and stored at − 80 °C until measurement.

Lipoprotein subfractions were measured by 1H-NMR 
spectroscopy. Briefly, the sodium phosphate buffer mixed 
with the thawed plasma samples in 1:1 ratio in a Bruker 
SampleJet NMR tube and vortexed for NMR analysis. 
A pool of all individual plasma samples was used as the 
quality control (QC) sample.

Nuclear magnetic resonance (NMR) spectroscopy
NMR spectroscopy was performed on BRUKER 
AVANCE IVDr spectrometer (Bruker BioSpin, GmBH, 
Rheinstetten, Germany). The 1H-NMR spectra were 
obtained by employing a 310-K and 600.13-MHz proton 
Larmor frequency NMR spectrometer with a 5-mm BBI 
probe.

Data analysis
The qualitative control analysis was performed regularly 
and accomplished within the analysis package Bruker 
IVDr BioBank QC (B.I.BioBankQC™). All the lipids and 
lipoprotein subfractions were quantified by the Bruker 
IVDr Lipoprotein Subclass Analysis (B.I.LISA™) analysis 
platform. The 112 lipid parameters include triglycerides 
(TG), cholesterol (CH), Apo-B (AB), Apo-A1 (A1), Apo-
A2 (A2), HDL, LDL, VLDL, and intermediate-density 
lipoprotein (IDL), as well as subfractions of each lipo-
protein, subdivided according to their density and their 
concentrations of TG, CH, phospholipids (PL), free cho-
lesterol (FC), AB, A1, and A2. For each subfraction with 
increasing density, HDL was divided into HDL 1–4, LDL 
into LDL 1–6, and VLDL into VLDL 1–5 (Additional 
file 1: Table S1).

Partial least squares discriminant analysis (PLS‑DA)
The PLS-DA was performed in MetaboAnalyst 6.0 online 
website [21]. The raw concentrations of lipoprotein sub-
fractions were sum-normalized and transformed using 
log10 and z-score methods, which was used as the inde-
pendent variables, and the group information was used 
as the dependent variables. The lipoprotein subfractions 
with variable importance in projection (VIP) score > 2 
were considered as the key lipoprotein subfractions.
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Logistic regression analysis
Multinomial logistic regression analysis, performed 
with “nnet” package in R software, was used to estimate 
the odds ratio (OR) and 95% confidence intervals (CIs) 
for the incidence of high-FNPO PCOS, per standard 
deviation (SD)-scaled lipoprotein subfractions concen-
tration. The lipoprotein subfractions with p < 0.05 in 
logistic regression analysis was selected as the key lipo-
protein subfractions.

Machine learning model development
To establish a machine learning model capable of dis-
tinguishing high-FNPO PCOS cases from all PCOS 
cases, we then established three types of models: (i) 
AMH models, which use AMH level as the sole feature, 
(ii) full models, which incorporate AMH level along 
with the seven key lipoprotein subfractions as features, 
and (iii) concise models, which incorporate AMH level 
along with V3TG as features. The samples were coded 
based on FNPO, with high-FNPO PCOS cases coded as 
1 and low-FNPO cases coded as 0.

The AMH level and the raw concentrations of lipo-
protein subfractions were sum-normalized and trans-
formed using log10 and z-score methods before 
applying machine learning techniques. We applied 
synthetic minority over-sampling technique com-
bined with edited nearest neighbors (SMOTEENN) 
to address class imbalance in datasets and to improve 
model performance and robustness. For both the 
AMH models and the full models, we used ten distinct 
machine learning algorithms to compare their perfor-
mance. These algorithms included linear discrimination 
analysis, ridge regression, linear support vector classi-
fier, logistic regression, multi-layer perceptron classi-
fier, gaussian naïve bayes, random forest, K-neighbors 
classifier, extra trees, and gradient boosting. The model 
performance was assessed by the area under the curve 
(AUC) of the receiver operating characteristic (ROC) 
and validated by bootstrap resampling (500 samples 
with replacement) [22]. The algorithm with the highest 
AUC (multi-layer perceptron classifier) was selected for 
further analysis.

In the development of the full model, to achieve a 
clinically applicable model with fewer features yet 
maintaining optimal performance, we employed recur-
sive feature elimination (RFE) for feature selection. By 
keeping AMH as a constant feature, we systematically 
eliminated the lipoprotein subfractions. This approach 
was undertaken to evaluate the model’s performance 
with varying numbers of features, determining the opti-
mal balance between feature count and model efficacy. 

Python (version 3.9.17) was employed for all machine 
learning tasks.

Statistical analysis
Gaussian distribution data were shown as the 
mean ± standard deviation. Abnormal distribution data 
were transformed by natural logarithmic, square root 
transformation or reciprocal and which achieved Gauss-
ian distribution then were shown as the means and 95% 
CIs. Some data remained skewed distribution were 
shown with the median and the interquartile range. Con-
tinuous variables were compared with one-way ANOVA 
followed by the post hoc test or nonparametric test. Cat-
egorical variables were compared by the chi-square test. 
Spearman (for non-normalized data) and Pearson (for 
normalized data) correlation analysis was used to evalu-
ate the correlation between lipoprotein subfractions 
measured by NMR spectroscopy and clinical methods. 
Two-sided p < 0.05 was considered statistically signifi-
cant. All the clinical data were analyzed using SPSS 26.0.

Results
Comparison of general characteristics based 
on the recommended FNPO threshold in the new 
international guideline
The general characteristics among controls, low-FNPO, 
and high-FNPO PCOS cases were presented in Table 1.

In terms of the endocrine parameters, both low- and 
high-FNPO PCOS cases presented significantly higher 
level of LH, T, AMH, and DHEAS and significantly lower 
level of FSH than controls. Compared with low-FNPO 
PCOS cases, the high-FNPO PCOS cases exhibited much 
severer endocrine hormone disorder.

As for the metabolic parameters, both low- and high-
FNPO PCOS cases showed significantly higher insu-
lin level and HOMA-IR. Furthermore, the high-FNPO 
PCOS cases displayed significantly higher level of not 
only insulin and HOMA-IR, but also TG, CH, and LDL-C 
than low-FNPO PCOS cases.

Taken together, the high-FNPO PCOS cases were char-
acterized by the severer endocrine and metabolic dys-
function phenotype.

The lipoprotein subfractions between low‑ and high‑FNPO 
PCOS cases
To eliminate the effect of age and BMI on lipoprotein 
subfractions, we selected the age- and BMI-matched 
controls and PCOS case as the subcohort to measure 
the lipoprotein subfractions. The anthropometric, ultra-
sonographic, and laboratory parameters of this subco-
hort were listed as Additional file 1: Table S2. Similarly, 
the high-FNPO PCOS cases in the subcohort presented 
worse endocrine profiles. However, the metabolic 
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parameters showed no difference in the high-FNPO 
PCOS cases, except for lower glucose level.

Since there was an overlap of metabolic parameters 
measured by NMR spectroscopy and clinical data, corre-
lation analysis was first performed to validate the consist-
ency between two methods. The scatter plot showed the 
close correlation (R2 ranged from 0.40 to 0.56, Additional 
file  2: Fig. S1), suggesting the high reliability of NMR 
data.

Firstly, we compared PCOS cases and controls. The 
PLS-DA scores plot of NMR data showed a slight dis-
crimination between control and PCOS (component 1 
14.3% and component 2 17.9%, Fig. 1B). The top impor-
tant variables (VIP > 2) contributed to the discrimination 
between control and PCOS included L5PL, L5PN, L5AB, 
L5CH, V4TG, L1FC, L5FC, and V5TG (Fig. 1C).

Subsequently we focused on the low- and high-FNPO 
PCOS. Similarly, the PLS-DA scores plot showed a clear 

discrimination among controls, low-FNPO, and high-
FNPO PCOS (component 1 28.3% and component 2 
18.1%, Fig.  1D). The top important variables (VIP > 2) 
contributed to the discrimination among these three 
groups included V4TG, V3TG, and V4PL (Fig. 1E).

To further explore the association between lipoprotein 
subfractions and the risk of high-FNPO PCOS, logistic 
regression analysis was performed (Fig. 2 and Additional 
file  2: Figs. S2–S4). V2TG, V3TG, V2CH, V3CH, and 
V3PL increased the risk of high-FNPO PCOS. The OR 
per SD increment of them were 1.59, 1.80, 1.62, 1.67, and 
1.65 separately (Fig. 2).

Based on the variables with VIP score > 2 in PLS-DA or 
p < 0.05 in logistic regression analysis, seven key lipopro-
tein subfractions were selected, including V2TG, V3TG, 
V4TG, V2CH, V3CH, V3PL, and V4PL. Among of them, 
the concentration of V3TG in high-FNPO PCOS cases 
was significantly higher than those in controls (p = 0.049) 

Table 1 Anthropometric, ultrasonographic, and laboratory parameters of the studied groups

Normally distributed data was shown as mean ± SD, non-normally data was recorded as median (interquartile range), and transformed non-normally data was shown 
as mean (95% confidence interval). p values were given by chi-square test, nonparametric test, or one-way ANOVA with the post hoc test

Abbreviations: BMI Body mass index, FNPO Follicle number per ovary, FSH Follicle stimulating hormone, LH Luteinizing hormone, E2 Estrogen, P Progesterone, PRL 
Prolactin, T Testosterone, TSH Thyroid stimulating hormone, AMH Anti-Müllerian hormone, DHEAS Dehydroepiandrosterone sulfate, HOMA-IR Homeostasis model 
assessment of insulin resistance, TG Triglycerides, CH Total cholesterol, LDL-C Low-density lipoprotein cholesterol, HDL-C High-density lipoprotein cholesterol
# means the significant difference when compared with controls
$ means the significant difference when compared with low-FNPO PCOS cases

Controls (n = 944) Low‑FNPO (n = 792) High‑FNPO (n = 182) p value

Anthropometric parameters

Age (year) 31.08 ± 4.41 29.36 ± 3.86# 29.28 ± 3.84#  < 0.001

BMI (kg/m2) 24.41 ± 4.23 25.21 ± 4.50# 24.43 ± 4.13  < 0.001

Menarche (year) 13.92 ± 1.46 14.11 ± 1.52# 14.10 ± 1.51 0.026

Ultrasonographic findings

FNPO 7.57 ± 2.64 14.61 ± 2.10# 24.51 ± 4.41#$  < 0.001

Endocrine parameters

FSH (mIU/mL) 7.30 (7.13, 7.47) 6.13 (6.01, 6.24)# 5.72 (5.50, 5.95)#$  < 0.001

LH (mIU/mL) 5.15 (4.88, 5.42) 8.49 (8.04, 8.95)# 10.48 (9.68, 11.27)#$  < 0.001

E2 (pg/mL) 35.45 (25.4, 72.08) 39.05 (29, 57.45)# 41.95 (32.05, 50.15)#  < 0.001

P (ng/mL) 0.53 (0.38, 0.68) 0.57 (0.42, 0.76)# 0.58 (0.43, 0.85)#  < 0.001

PRL (ng/mL) 17.54 (16.87, 18.20) 17.36 (16.74, 17.99) 15.04 (13.99, 16.09)#$  < 0.001

T (ng/dL) 23.76 (23.17, 24.36) 34.82 (33.78, 35.86)# 49.08 (46.05, 52.11)#$  < 0.001

TSH (μIU/mL) 2.30 (1.68, 3.13) 2.37 (1.70, 3.17) 2.49 (1.64, 3.27) 0.590

AMH (ng/mL) 4.23 (4.03, 4.44) 9.50 (9.11, 9.90)# 15.64 (14.68, 16.60)#$  < 0.001

DHEAS (μg/dL) 237.18 (231.37, 242.98) 258.38 (251.52, 265.25)# 265.29 (247.55, 283.03)#  < 0.001

Metabolic parameters

Glucose (mmol/L) 5.26 (5.05, 5.69) 5.40 (5.08, 5.71) 5.39 (5.05, 5.65) 0.450

Insulin (mIU/L) 14.64 (14.07, 15.21) 17.24 (16.20, 18.27)# 20.54 (18.53, 22.54)#$  < 0.001

HOMA-IR 3.60 (3.44, 3.77) 4.25 (3.97, 4.53)# 5.12 (4.51, 5.72)#$  < 0.001

TG (mmol/L) 1.41 (1.35, 1.46) 1.49 (1.41, 1.57) 1.81 (1.50, 2.12)#$ 0.004

CH (mmol/L) 4.53 (4.48, 4.58) 4.55 (4.49, 4.61) 4.74 (4.60, 4.88)#$ 0.021

LDL-C (mmol/L) 2.95 ± 0.69 3.02 ± 0.65 3.21 ± 0.77#$  < 0.001

HDL-C (mmol/L) 1.24 (1.22, 1.26) 1.23 (1.21, 1.25) 1.20 (1.16, 1.24) 0.120
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Fig. 1 Multivariate analysis of lipoprotein subfractions. A The flow chart of the study. B PLS-DA scores plot of controls and PCOS cases. C Variable 
importance in projection (VIP) scores of PLS-DA of controls and PCOS cases. D PLS-DA scores plot of controls, low-FNPO, and high-FNPO PCOS 
cases. E VIP scores of PLS-DA of controls, low-FNPO, and high-FNPO PCOS cases
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and low-FNPO PCOS cases (p = 0.036, Additional file 2: 
Fig. S5A). Additionally, the other six lipoprotein subfrac-
tions also presented an increased trend in high-FNPO 
PCOS cases (Additional file 2: Fig. S5B–G).

Machine learning prediction model for high‑FNPO PCOS 
cases and internal validation
Considering that the new guidelines have proposed 
including AMH as a diagnostic criterion to replace ultra-
sound-based PCOM, we initially constructed the AMH 
models using the AMH marker to predict high-FNPO 
PCOS cases using ten machine learning algorithms. The 
AUCs of AMH models with different algorithms were 
between 0.522 and 0.750 (Additional file 2: Fig. S6A).

Furthermore, we incorporated the above-mentioned 
seven key lipoprotein subfractions (V2TG, V3TG, V4TG, 
V2CH, V3CH, V3PL, and V4PL) into the AMH models as 
the full models. The full models constructed by the seven 
key lipoprotein subfractions and AMH achieved a bet-
ter discrimination, with AUCs between 0.695 and 0.874 
under ten algorithms (Additional file  2: Fig. S6B and 
Fig. 3A). Among of them, the full model established using 
multi-layer perceptron classifier exhibited the optimum 
performance (AUC = 0.874, Fig.  3A). The bootstrapped 
results showed high reproducibility in both AMH and 
full models (Additional file 2: Fig. S7).

To obtain a simpler and easily applicable “con-
cise model” with a higher AUC, the recursive feature 

Fig. 2 Associations of VLDL lipoprotein subfractions with risk of high-FNPO PCOS. OR (with 95% CIs) was presented per SD higher lipoprotein 
subfractions and given by multinomial logistic regression analysis. VLDL was divided into five subfractions VLDL-1, 2, 3, 4, 5 (V1, V2, V3, V4, 
and V5), numbering according to increasing density. Abbreviations: OR, odds ratio; CI, confidence interval; VLDL, very low-density lipoprotein; TG, 
triglycerides; CH, cholesterol; FC, free cholesterol, PL, phospholipid
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elimination with logistic regression was implemented 
and the results revealed the increasing AUCs along with 
more lipoprotein subfractions added to the AMH model 
(Additional file 2: Fig. S8A). Even if only one lipoprotein 
subfractions (V3TG) was added into the AMH model, 
the AUC could increase to 0.807 (Fig. 3B). Bootstrapped 
results showed similar AUC (0.808 ± 0.050, Additional 
file 2: Fig. S8B).

Discussion
In this study, we uncovered the worse metabolic param-
eters in the high-FNPO PCOS cases under the new inter-
national guideline. Furthermore, the detailed lipoprotein 
subfractions between low- and high-FNPO PCOS cases 
were investigated. Seven key lipoprotein subfractions 
were identified based on PLS-DA and logistic associa-
tion analysis. Machine learning prediction model devel-
opment suggested that the addition of key lipoprotein 
subfractions, especially for V3TG, into the AMH model 
might improve its discrimination ability for high-FNPO 
PCOS cases.

PCOS is a complex endocrine and metabolic disorder 
in reproductive-age women, and PCOM is one of diag-
nostic terms. Due to the improvement of ultrasound 
technology, it has been controversial that the FNPO ≥ 12 
was defined as PCOM. Therefore, the new international 
guideline suggested FNPO of 20 as the cutoff. At present, 
several studies have explored the impact of the stricter 
PCOM threshold from different aspects, such as diagnos-
tic status for PCOS adult women [23], AR expression in 

granulosa cells [24], AR CAG length in serum [25], and 
blood DNA methylation [10]. However, there is still a gap 
in the field of metabolic profile under the stricter PCOM 
threshold.

Various studies have presented that metabolic dysregu-
lation involved in the development of PCOM. Animal 
experiments validated that high-fat diet could induce the 
atretic and cystic follicles [26–28] and influence the fol-
licle development [29], which were similar to the charac-
teristic of PCOS. Human studies have reported that small 
follicles (5–8 mm) were positively correlated with these 
markers of metabolic dysfunction [30] and PCOM was 
associated with insulin resistance [31]. Consistent with 
those studies, our study uncovered the adverse metabolic 
parameters in high-FNPO PCOS cases.

Our study further concentrated on the alteration of 
lipid metabolism between low- and high-FNPO PCOS 
cases and investigated various lipoprotein subfractions 
simultaneously by NMR spectroscopy, trying to provide 
more evidence for metabolic biomarkers and potential 
mechanisms of PCOM based on the new guideline. Pre-
vious study has compared the metabolic parameter and 
showed higher TG and CH level in high-FNPO PCOS 
cases [9]. However, the results might be influenced by 
higher BMI of high-FNPO PCOS cases and were lim-
ited by the fewer clinical measurements. Our study 
eliminated the impact of age and BMI and performed 
the measurement of lipoprotein subfractions in PCOS to 
deeply explore the minimal but crucial metabolic change.

Fig. 3 The ROC curve of model development. A Model development with AMH and seven key lipoprotein subfractions (V2TG, V3TG, V4TG, 
V2CH, V3CH, V3PL and V4PL). B Model development with AMH and V3TG
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VLDL, contented with TG, CH, CH ester, and PL, 
was secreted into circulation from liver [32, 33]. Our 
results not only supported the previous studies showing 
increased VLDL concentration in PCOS cases [18, 34], 
but also added more information related with the VLDL 
subfraction in PCOM diagnosed by the new international 
guideline. First, higher TG, CH, and PL in VLDL were 
observed in high-FNPO POCS cases compared with age- 
and BMI-matched controls and low-FNPO PCOS cases. 
Second, we firstly proposed that TG, CH, and PL in 
VLDL contributed to the classification between low- and 
high-FNPO PCOS cases, suggesting that the dysregula-
tion of VLDL subfractions might participate the devel-
opment of PCOM by a currently unknown way. Notably, 
both PLS-DA and logistic regression analysis uncovered 
V3TG, suggesting the important role of TG in medium 
VLDL particles. This implies that VLDL, as well as VLDL 
subfraction, should be focused in the diagnosis of high-
FNPO PCOS.

The underlying mechanism for the abnormal VLDL 
subfractions in high-FNPO PCOS women is not well 
understood. Considering that the testosterone levels 
were positively associated with PL, TG, and CH in larger 
VLDL subtractions, and the concentrations and mean 
diameters of larger VLDL subfractions [18], we have a 
reasonable suspicion that the profile with dysregulation 
of VLDL subfractions is resulted from the hyperandro-
genism. A randomized crossover study shows that high 
physiological testosterone could increase hepatic TG 
synthesis and VLDL-TG secretion [35], which may be 
activated by AMP-activated protein kinase–dependent 
pathway or fluctuations of hepatocellular  Ca2+ concentra-
tions. As we known that androgen excess enhances fol-
licle development and dysfunctional formation of antral 
follicles leading to PCOS [36], it is sound to suspect that 
androgen might be the potential confounders between 
abnormal VLDL subfractions and PCOM.

Additionally, PCOS women are at high risk to develop 
several metabolic disorders in the long-term manage-
ment, such as cardiovascular disease, type 2 diabetes, and 
metabolic associated fatty liver disease [4, 37, 38]. Previ-
ous studies reported that insulin resistance, abdominal 
obesity, and hyperandrogenism were all contributed to 
the lipoprotein profiles in PCOS [19]. Coincidentally, sev-
eral studies have reported that dysfunctional metabolism 
of VLDL, particular for the TG in VLDL, was positively 
associated with the risk of these metabolic complication 
of PCOS [39–41]. Thus, metabolic diseases may also be 
mediators of VLDL subfraction and PCOM. The specific 
biological mechanisms involved remain to be confirmed 
by further experiments.

AMH, belonging to transforming growth factor beta 
family, is a polypeptide secreted by granulosa cells [42, 

43]. The levels of AMH in PCOS are significantly higher 
than control women and strongly associated with the 
antral follicle counts [44]. Due to the challenges of ultra-
sound in diagnosing PCOM, several studies and new 
guideline proposed that serum AMH could be a substi-
tute way of ultrasound [45, 46]. However, the diagnostic 
accuracy remains to be improved [47]. To address the 
key issue, a group of key lipoprotein subfractions were 
added in the AMH model to predict PCOM under the 
new guideline, showing increased model performance. 
To obtain a concise model, V3TG was added in the AMH 
model, which also improved the predictive ability. Our 
current results found the potential ability of key lipopro-
tein subfractions, particular for V3TG, to predict PCOM. 
The model of AMH and V3TG simultaneously reflect the 
endocrine and metabolic dysfunction, which might be a 
more perfect predictive model for PCOM based on the 
new guideline.

Predicting polycystic ovarian morphology with appro-
priate plasma markers instead of ultrasonography is 
currently expected in PCOS clinical application. Using 
plasma measures is much more convenient than ultra-
sound examination as most of the PCOS women received 
blood test in clinics. In addition, plasma measures could 
provide a better way for adolescent PCOS and women 
who are not sexually active, whom may not be able to 
get better accuracy with transabdominal ultrasound, and 
transvaginal ultrasound is painful. Also, we acknowledge 
that there is a long way to go to promote the measure-
ment of plasma lipoprotein fractions in the clinic. After 
all, both the instrumentation and the cost of the test need 
to be evaluated in depth for effectiveness.

However, the quantification of these markers using 
NMR spectroscopy remains limited to research settings 
and has not yet been implemented in routine clinical 
practice. Consequently, the associated costs are not well-
established, and a formal cost-effectiveness analysis could 
not be conducted in this study. Future research should 
evaluate the economic feasibility of incorporating lipo-
protein subfractions into clinical workflows by comput-
ing the incremental cost-effectiveness ratio, that is, the 
comparison of the costs and the improved diagnostic 
accuracy from the model with AMH only to our diag-
nostic model (AMH and lipoprotein subfractions). With 
technological advancements and broader adoption, the 
implementation of a fast and low-cost method for VLDL 
subfraction determination remains an unmet challenge. 
Until then, the present study primarily aims to estab-
lish the scientific and diagnostic value of these markers, 
which serves as a foundation for future cost-effectiveness 
studies.

This study has some limitations and needs a series of 
future work. Due to the relatively smaller sample size for 
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lipoprotein subfractions measurement, we employed boot-
strap resampling to internally validate the performance of 
the proposed diagnostic model. Bootstrap validation is a 
widely used method for optimizing models and generating 
unbiased estimates of performance metrics, particularly 
when external cohorts are unavailable. However, external 
validation in independent and diverse patient populations 
remains an important next step to establish the model’s 
generalizability and clinical utility. Future research should 
focus on validating the model in larger-scale and multi-
center cohorts to ensure its broader applicability. In addi-
tion, a post hoc power analysis indicated that the sample 
size in the current study may be insufficient to detect small-
to-moderate effect sizes for certain lipoprotein subfractions 
with high statistical power. This limitation highlights the 
exploratory nature of the study and underscores the need 
for larger and more diverse cohorts in future research. 
Despite this limitation, the performance of machine learn-
ing models, supported by bootstrap resampling, suggests 
that the identified associations are robust and provides a 
foundation for future investigations.

Conclusions
In summary, this study comprehensively and system-
atically provided the clinical characteristic of low- and 
high-FNPO PCOS cases and the exact profile of lipopro-
tein subfractions. We identified the distinct and associ-
ated lipoprotein subfractions in high-FNPO PCOS cases. 
Subsequently, we developed improved models with these 
lipoprotein subfractions to predict PCOM under the new 
guideline, although the generalizability and clinical util-
ity of the model still needs to be externally validated in 
an independent and diverse population. Collectively, 
our study greatly enriches the understanding of PCOM 
from the metabolic aspect, providing the insight into the 
effects of lipoprotein subfractions on the PCOM.
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